Р. Датта, Д. Пал Чоудхури, С. Мухопадхай 🖂

Университет Калькутты, кафедра химических технологий, отделение керамики, г. Калькутта, Индия

УЛУЧШЕНИЕ РЕОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК УГЛЕРОДСОДЕРЖАЩЕЙ СМЕСИ, ОБОГАЩЕННОЙ ГЛИНОЗЕМОМ, С ПОМОЩЬЮ ПОВЕРХНОСТНО-МОДИФИЦИРОВАННЫХ ГРАФИТОВ

Цель настоящей работы — изучение повышенной диспергируемости природного графита в водной среде после модифицирования его поверхности. В процессе проводимой работы наблюдалось улучшение параметров текучести водных суспензий, содержащих поверхностно-модифицированный графит, без предварительной ультразвуковой обработки. Исследовано влияние тонких Al₂O₃-покрытий на свойства частиц чешуйчатого графита.

Ключевые слова: реологические характеристики, поверхностно-модифицированный графит, бетонные огнеупорные изделия, высокоглиноземистый цемент (ВГЦ).

введение

νπκ

В течение последних нескольких десятилетий все большее значение приобретают неформованные огнеупорные материалы, используемые для получения литых бетонных изделий. К числу таких материалов относятся огнеупорные смеси на основе глинозема и графита; чешуйчатый графит среди других видов графита является наиболее предпочтительным для этого типа смесей. Однако широкое использование таких огнеупорных смесей для производства бетонных изделий до сих пор сдерживается низкой смачиваемостью графита и его склонностью к окислению при повышенных температурах.

Делались попытки [1-6] повысить текучесть формовочной смеси и ее стойкость к окислению путем модифицирования поверхности частиц графита разными способами. Оптимальная текучесть тонкодисперсных составляющих огнеупорной матрицы играет важнейшую роль в правильном формировании и гомогенности бетонной смеси при изготовлении огнеупорных изделий. Для получения требуемых реологических характеристик бетонов в огнеупорные смеси вводятся различные добавки и дефлокулянты [7]. Высокоглиноземистый цемент (ВГЦ)

> ⊠ C. Мухопадхай E-mail: msunanda cct@yahoo.co.in

в настоящее время используется в качестве эффективного огнеупорного связующего и является одним из ключевых компонентов бетонных огнеупорных смесей. В свою очередь, реологические свойства обогащенной глиноземом бетонной смеси на основе графита и ВГЦ зависят от соотношения и характеристик этих двух компонентов. В этой связи важным является их взаимодействие в водной суспензии в присутствии других высокодисперсных компонентов. В настоящей статье рассматриваются особенности реологических характеристик графита с модифицированной поверхностью. Проведен сравнительный анализ показателей текучести высокоглиноземистых смесей на основе природного и модифицированного графита.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В ходе работы на поверхность образцов природного чешуйчатого графита золь-гель методом было нанесено тонкое наноструктурное покрытие γ-Al₂O₃, легированного кальцием. Подробное описание метода модифицирования поверхности графита приведено в статьях [8–14].Структуру покрытия исследовали совмещенным методом сканирующей электронной микроскопии (СЭМ) и энергодисперсионной рентгеновской спектроскопии (ЭДС) на приборе JEOL JSM 5200. Для исследования влияния модифицирующего покрытия на реологические свойства водной суспензии с содержанием 30 мас. % графита использовали анализатор DSR Brookefield RHEO 2000 (версия 2.8). Реологические характеристики суспензий исследовали с использованием цилиндрической чаши объемом 94,5 см³. Были получены зависимости вязкости и напряжения сдвига от скорости сдвига.

Для исследований использовали глиноземсодержащие смеси с добавками модифицированного и немодифицированного графита (см. таблицу). Такие смеси представляют собой высокоглиноземистые низкоцементные массы, включающие 72 мас. % наполнителя и 28 мас. % порошковой матрицы. Размер частиц смеси не более 75 мкм. Микронные порошки глинозема составляли основную часть порошковой матрицы (38 мас. %) и включали реактивный (99,3 %) и белый табулярный глинозем (99,4 %) в соотношении 7:3. В состав смеси входили также микрокремнезем (98 %), ВГЦ (74,2 %) и высокоглиноземистая шпинель (90.02 %). Предварительно использование алюмомагнезиальной шпинели при повышенной температуре способствует образованию в изделиях гексаалюмината кальция за счет образования дополнительных соединений с корундовыми фазами. Полученные таким образом фазы обеспечивают прочную связь между наполнителем и матрицей (связующим компонентом) [15]. Смеси, содержащие 20 % модифицированного и немодифицированного графита, были обозначены как Mat+ и Mat- соответственно (см. таблицу). Остальные параметры этих двух смесей были одинаковыми. Текучесть суспензий Mat⁺ и Mat⁻, содержащих 30 мас. % твердого компонента, исследовали без предварительной ультразвуковой обработки.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты элементного анализа образцов графита с покрытием, полученные с использованием ЭДС и СЭМ, показали наряду с углеродом присутствие в них Al, Са и О (рис. 1). Тонкая пленка γ-Al₂O₃, легированного кальцием,не позволила

Рис. 1. Микрофотография и ЭДС-спектр образца модифицированного графита

выявить примеси кремнезема в графите. Ранее было показано [16], что такое покрытие способствует повышению стойкости частиц графита к окислению и придает им гидрофильные свойства за счет формирования кислотных групп γ-Al₂O₃. Наличие гидрофильных свойств может быть объяснено также существованием на поверхности модифицированного графита функциональных групп –СООН и –ОН [4, 6, 8–14], в результате чего графит с модифицированной поверхностью намного лучше диспергируется в водной среде и водопотребление бетонных смесей при этом уменьшается.

Результаты исследования реологических характеристик водных суспензий природного и модифицированного графита показаны на рис. 2. Установлено, что при содержании 35 % графита наблюдается существенное повышение вязкости суспензии (см. рис. 2, *a*), что может быть объяснено высокими значениями ван-дерваальсовых сил притяжения между частицами и постоянной Гамакера [17, 18]. Вследствие этого происходят агрегация частиц графита в суспензии и их негомогенное распределение в

Рис. 2. Зависимости вязкости η (*a*) и напряжения сдвига τ (*б*) от скорости сдвига γ водных суспензий, содержащих 30 мас. % модифицированного и немодифицированного графита, а также зависимости $\eta(\gamma)$ водных суспензий с 25, 30 и 35 % немодифицированного графита

воде. В отличие от природного графита модифицированные образцы имеют гидрофильные группы, препятствующие агрегации частиц, что приводит к гомогенному распределению частиц по всему объему воды. Присутствие гидрофильных групп на поверхности частиц модифицированных графитов обусловливает возникновение поверхностного потенциала, который является причиной электростатического отталкивания между частицами в воде. факторы приводят к снижению вязко-Эти сти и сдвиговых напряжений в суспензиях с поверхностно-модифицированным графитом (см. рис. 2, б) [19].

Группы –СООН и –ОН, располагающиеся на поверхности модифицированных графитов, в присутствии ВГЦ играют роль замедлителей схватывания. Кроме того, гидроксильные группы при слабощелочном рН суспензии способствуют хорошей диспергируемости частиц глинозема [20, 21]. Ионы кальция, находящиеся в составе тонкого покрытия на поверхности частиц графита, снижают также срок схватывания ВГЦ в образце Mat⁺. Частицы кремнезема, присутствующие в образце Mat⁺, связываются с ионами кальция и проникают внутрь частиц модифицированного чешуйчатого графита, обладающих высокой удельной поверхностью (7,9 м²/г).

Все эти процессы препятствуют гелеобразованию ВГЦ по механизму растворение - осаждение. Таким образом, схватывание графитсодержащего цементного раствора замедляется наряду с ростом его текучести (рис. 3). С другой стороны, присутствующий в образце Mat- немодифицированный графит с удельной поверхностью частиц 1,8 м²/г, не содержащий функциональных групп и ионов кальция, не влияет на срок схватывания. Таким образом, текучесть и гомогенность смеси Mat- ниже, чем у смеси Mat+. При этом, однако, улучшение реологических характеристик образцов Mat⁺ в сравнении с образцами Mat- было менее существенно, чем у тех же образцов после предварительной обработки их ультразвуком [19].

Судя по таблице, основным компонентом смесей Mat⁺ и Mat⁻ являются частицы Al_2O_3 микронного диапазона. При добавлении воды эти частицы создают в суспензии большое количество ионов $[Al(OH)_4]^-$ [22]. Реологические характеристики смесей зависят от матриц [23], имеющих в составе Al_2O_3 , из-за чего демонстрируют схожие характеристики (см. зависимость

Рис. 3. Зависимости напряжения сдвига τ от скорости сдвига γ для смесей Mat⁺ и Mat⁻ без обработки ультразвуком, а также зависимости $\eta(\gamma)$

η(γ) на рис. 3). В данном случае графит с покрытием, содержащим у-Al₂O₃, имеет некоторое преимущество в свойствах. Требуемый уровень рН смеси Mat+ обеспечивается дополнительными группами -СООН, которые способствуют локализации ионов Н⁺ после диссоциации в воде. Избыток ионов [Al(OH)₄]-способствует формированию Al(OH)₃ благодаря кислотности поверхности обработанного графита [24]. Следовательно, суспензия на основе смеси Mat⁺ содержит большее количество Al(OH)₃, чем суспензия на основе смеси Mat-; Al(OH)3 имеет лучшую растворимость по сравнению с фазами САН₁₀, С₂АН₈ и С₃АН₆, образовавшимися в результате гидратации ВГЦ в смесях [25]. Кроме того, это повышает текучесть смеси Mat+ благодаря ограничению выделения малорастворимых фаз САН. Таким образом, модифицирование поверхности графита способствует улучшению реологических характеристик высокоглиноземистых смесей даже без предварительной ультразвуковой обработки (см. рис. 3).

ЗАКЛЮЧЕНИЕ

Показана возможность улучшения реологических характеристик высокоглиноземистой смеси путем модифицирования поверхности частиц графита тонкой пленкой γ-Al₂O₃, легированного кальцием. Модифицирование графита позволяет снизить водопотребность высокоглиноземистых бетонов и улучшить эксплуатационные характеристики изделий из глиноземноуглеродистых смесей.

-			~ /
CACTOR	FRUIDOONIUS VERODORUSTUV	CHOCOH	
CUCIAB	ТЛИНОЗЕМНО-УГЛЕООДИСТЫХ	смесеи.	MdC. 70
	утереднетеля		

		• • •	•				
Образец	Глинозем			Глиноромнотод	Murrownow	Графит	
	реактивный	белый табулярный	ВГЦ	шпинель	незем	немодифици- рованный	модифициро- ванный
Mat+	26,6	11,4	15,0	25,0	2,0	0	20,0
Mat⁻	26,6	11,4	15,0	25,0	2,0	20,0	0

Библиографический список

1. *Kawabata, K.* Properties of Al₂O₃-C castable refractories with graphite powder coated with Al₂O₃ / *K. Kawabata, H. Yoshimatsu, E. Fujii* [et al.] // J. Ceram. Soc. Jpn. - 2001. - Vol. 109. - P. 270-273.

2. **Zhang, S.** Improving the water-wettability and oxidation resistance of graphite using Al_2O_3/SiO_2 sol-gel coatings / S. Zhang, W. E. Lee // J. Eur. Ceram. Soc. — 2003. — Vol. 23, Ne 8. — P. 1215–1221. doi.org/10.1016/S0955-2219(02)00284-4.

3. *Saberi, A.* Development of $MgAl_2O_4$ spinel coating on graphite surface to improve its water-wettability and oxidation resistance / *A. Saberi, F. G. Fard, H. Sarpoolaky* [et al.] // Ceram. Int. — 2009. — Vol. 35, Ne 1. — P. 457–461. doi.org/10.1016/j.ceramint.2007.12.007.

4. *Mukhopadhyay, Sunanda*. Spinel — coated graphite for carbon containing refractory castables / *Sunanda Mukhopadhyay, Sarbasree Dutta, Sheikh A. Ansar* [et al.] // J. Am. Ceram. Soc. — 2009. — Vol. 92, № 8. — P. 1895–1900. doi.: 10.1111/j.1551-2916.2009.03133.x.

5. *Liu, X.* Water-wettability and dispersivity of TiCcoated graphite for refractory castable applications / *X. Liu, S. Zhang //* Refractories Manual — Interceram. — 2010. — Vol. 59. — P. 15–18.

6. **Mukhopadhyay, S.** Nanostructured cementitious sol gel coating on graphite for application in monolithic refractory composites / S. Mukhopadhyay, G. Das, I. Biswas // Ceram. Int. — 2012. — Vol. 38, № 2. — P. 1717–1724. doi.org/10.1016/j.ceramint.2011.09.006.

7. *Kashcheev, I. D.* Additives to control the rheological properties of unshaped castables / *I. D. Kashcheev, K. G. Zemlyanoi* // Refract. Ind. Ceram. — 2005. — Vol. 46, № 5. — P. 325–328.

8. *Mukhopadhyay, S.* Comparison of solid state and sol-gel derived calcium aluminate coated graphite and characterization of prepared refractory composite / *S. Mukhopadhyay, S. Dutta* // Ceram. Int. — 2012. — Vol. 38. — P. 4997–5006. doi.org/10.1016/j.ceramint.2012.02.096.

9. *Mukhopadhyay, S.* In depth studies on cementitious nanocoatings on graphite for its contribution in corrosion resistance of alumina based refractory composite / *S. Mukhopadhyay, C. Mondal, A. Chakraborty* [et al.] // Ceram. Int. — 2015. — Vol. 41. — P. 11999–12010. doi. org/10.1016/j.ceramint.2015.06.012.

10. *Ansar, Sk. A.* Development of mullite and spinel coatings on graphite for improved water-wettability and oxidation resistance / *Sk. A. Ansar, S. Bhattacharya, S. Dutta* [et al.] // Ceram. Int. — 2010. — Vol. 36. — P. 1837–1844. doi: 10.1016/j.ceramint.2010.03.035.

11. *Mukhopadhyay, S.* Improved sol-gel spinel (MgAl₂O₄) coatings on graphite for application in carbon containing high alumina castables / *S. Mukhopadhyay //* J. Sol-Gel Sci. Technol. — 2010. — Vol. 56. — P. 66–74. doi. org/10.1007/s10971-010-2275-9.

12. **Mukhopadhyay, Sunanda.** Characteristics of refractory castables containing mullite and spinel coated graphites / Sunanda Mukhopadhyay, Sk. Abdul Ansar, D. Paul [et al.] // Mater. Manuf. Process. — 2012. — Vol. 27. — P. 177–184. doi.org/10.1080/10426914.2011.560501.

13. *Mukhopadhyay, S.* Nanoscale calcium aluminate coated graphite for improved performance of alumina

based monolithic refractory composite / *S. Mukhopadhyay* // Mat. Res. Bull. — 2013. — Vol. 48. — P. 2583–2588. doi. org/10.1016/j.materresbull.2013.03.006.

14. **Das, Paromita.** Extended studies on surfacetreated graphite vis-à-vis its application in high alumina refractory castable / Paromita Das, Sarbasree Dutta, Nandini Das, Sunanda Mukhopadhyay // Int. J. Appl. Ceram. Tech. — 2018. — Vol. 15. — P. 668–677. doi. org/10.1111/ijac.12852.

15. **Mukhopadhyay, S.** Effect of preformed and in situ spinels on microstructure and properties of a low cement refractory castable / *S. Mukhopadhyay, P. K. DasPoddar* // Ceram. Int. — 2004. — Vol. 30, № 3. — P. 369–380. doi. org/10.1016/S0272-8842(03)00117-2.

16. *Arai, Y.* Chemistry of powder production, Chapman and Hall / *Y. Arai.* — New York, 1996. — P. 49, 70.

17. *Horn, R. G.* Surface forces and their action in ceramic materials / *R. G. Horn* // J. Am. Ceram.Soc. — 1990. — Vol. 73, № 5. — P. 1117–1135. doi.org/10.1111/j.1151-2916.1990. tb05168.x.

18. **Park, H. C.** Effect of green microstructure on sintered microstructure and mechanical properties of reaction-bonded silicon carbide / *H. C. Park* // J. Korean Ceram. Soc. — 1999. — Vol. 36, № 1. — P. 97–105.

19. *Mukhopadhyay, S.* The influence of surfacemodified graphites on the rheological pattern of alumina-carbon cementitious refractory castable matrix /*S. Mukhopadhyay* // Ceram. Int. — 2019. — Vol. 45, № 16. — P. 19991–20001. doi: 10.1016/j.ceramint.2019.06.257.

20. Nouri-Khezrabad, M. Citric acid role and its migration effects in nano-bonded refractory castables / M. Nouri-Khezrabad, A. P. Luz, F. Golestani Fard [et al.] // Ceram. Int. -2014. - Vol. 40, \mathbb{N} 9A. - P. 14523–14527. doi: 10.1016/j.ceramint.2014.10.143.

21. *Hiber, P. C.* Influence of the dispersant structure on properties of electrstatically stabilized aqueous alumina suspensions / *P. C. Hiber, T. J. Graule, L. J. Gauckler //* J. Eur. Ceram. Soc. — 1997. — Vol. 17. — P. 239–249. doi. org/10.1016/S0955-2219(96)00151-3.

22. *Oliveira, I. R.* Hydration of CAC cement in a castable refractory matrix containing processing additives / *I. R. Oliveira, F. S. Ortega, V. C. Pandolfell //* Ceram. Int. — 2009. — Vol. 35. — P. 1545–1552.doi.org/10.1016/j. ceramint.2008.08.014.

23. **Zhang, X.** Effect of pH on rheology of aqueous $Al_2O_3/$ SiC colloidal system / X. Zhang, Y. Zhang, H. Chen, L. Guo // J. Advanced Ceramics. -2014. - Vol. 3, Ne 2. - P. 125-131. doi: 10.1007/s40145-014-0102-4.

24. **Wang, Y.** Effect of dispersants on the hydrate morphologies of spinel-containing calcium aluminate cement and on the properties of refractory castables / Y. Wang, B. Zhu, X. Li, P. Chen // Ceram. Int. — 2016. — Vol. 42, № 1A. — P. 711–720. doi.org/10.1016/j. ceramint.2015.08.169.

25. **Parker, K. M.** Refractory calcium aluminate cements / K. M. Parker, J. H. Sharp // Transactions Journal British Ceramic Society. — 1982. — Vol. 81. — P. 35–42. ■

Получено 20.04.20 © Р. Датта, Д. Пал Чоудхури, С. Мухопадхай, 2020 г.