Ш. М. Шарафеев, д. т. н. В. М. Погребенков (🖂)

ФГАОУ ВО «Национальный исследовательский Томский политехнический университет», г. Томск, Россия

УДК 661.846.652.017:620.181 ПРОЦЕССЫ ФАЗООБРАЗОВАНИЯ В ПРИРОДНЫХ СИЛИКАТАХ МАГНИЯ РАЗЛИЧНОЙ СТРУКТУРЫ ПРИ ИХ ФТОРАММОНИЙНОЙ ОБРАБОТКЕ

Исследованы особенности фтораммонийной обработки форстерита, энстатита, талька, а также процессы фазообразования, протекающие при обжиге фторированных минералов. Установлено, что структурный кремнезем минералов взаимодействует с гидродифторидом аммония с образованием гексафторосиликата аммония, сублимационное удаление которого обеспечивает обескремнивание минералов и их деструкцию. В результате обжига профторированных минералов происходит их структурная перестройка с образованием силикатов и фторосиликатов магния островного строения.

Ключевые слова: форстерит, энстатит, тальк, фтораммонийная обработка, гексафторосиликат аммония (ГФСА).

введение

Магнезиальносиликатные керамические и огнеупорные материалы, основной кристаллической фазой которых является энстатит Mg₂[Si₂O₆] или форстерит Mg₂[SiO₄], находят широкое применение в различных областях науки и техники наряду с традиционными материалами на основе глин и каолинов. Этому способствуют значительное разнообразие минеральных силикатов и гидросиликатов магния, а также их относительно высокая распространенность в земной коре.

В настоящее время достигнуты значительные успехи в получении форстеритовой и энстатитовой керамики на основе синтетического сырья с помощью твердофазного синтеза из чистых оксидов, а также золь-гель методов [1-3]. Подобные способы применимы для производства ограниченного числа изделий, обладающих исключительными свойствами (лазерные материалы, электроизоляционные детали ответственных узлов). Основу большей части материалов (электрокерамика, огнеупоры, пропанты), выпускаемых промышленностью, представляет природное минеральное сырье [4].

> ⊠ В. М. Погребенков E-mail: chtd@tpu.ru

Традиционно магнезиальносиликатную электрокерамику получают обжигом сырьевых смесей, содержащих тальк Mg₃[Si₄O₁₀](OH)₂. При нагреве до 900-1000 °С тальк разлагается на метасиликат магния и свободный кремнезем в виде кристобалита:

 $3MgO \cdot 4SiO_2 \cdot H_2O = 3(MgO \cdot SiO_2) + SiO_2 + H_2O.$ (1)

Избыточное количество кристобалита в энстатитовых и форстеритовых материалах негативно влияет на эксплуатационные свойства керамики. Вводимые в сырьевые массы глинистые компоненты и оксиды двухвалентных металлов (CaO, BaO, ZnO) вступают во взаимодействие со свободным кремнеземом с образованием легкоплавкого расплава, который при охлаждении образует стеклофазу [5, 6].

В технологии форстеритовых огнеупоров широко используется различное магнезиальносиликатное сырье, содержащее оливины, серпентины и тальк. Дошихтовка этих материалов оксидом магния или магнезитом производится как для увеличения выхода форстерита вследствие протекания реакции между MgO и SiO₂, образующимся при термическом разложении минералов, так и для связывания примесей (Fe₂O₃, CaO и др.) в более огнеупорные фазы для получения качественных материалов [7].

При получении магнезиальносиликатной керамики на основе природного сырья существует проблема управления фазовым составом материалов из-за образования избыточного SiO₂ относительно стехиометрии конечных целевых кристаллических фаз. Эта проблема в настоящее время решается путем дошихтовки сырьевых масс оксидом магния и его солями, а также стеклообразующими добавками.

Альтернативным способом управления фазовым составом материалов на основе силикатов является регулирование содержания SiO₂ в сырьевых материалах. Этот способ основан на взаимодействии силикатных пород с расплавленным гидродифторидом аммония (ГДФА), который активно взаимодействует с примесным кварцем, а также со структурным кремнеземом силикатов с образованием комплексов — фторосиликатов аммония (NH₄)₂SiF₆ и (NH₄)₃SiF₇. Эти соединения легко сублимируются при 320 °C [8], обеспечивая обескремнивание компонентов минеральных систем.

В настоящее время установлены закономерности процессов, протекающих при фторировании некоторых силикатов и гидросиликатов магния с ГДФА, находящимся в избытке относительно полного фтораммонийного разложения минералов до фторидов металлов и фторометаллатных комплексов. Установлено [9], что магнезиальные силикаты достаточно легко вступают в реакцию с ГДФА уже при комнатной температуре, при этом скорость реакции фторирования резко увеличивается при плавлении ГДФА. Основными продуктами взаимодействия являются $(NH_4)_2MgF_4$ и $(NH_4)_2SiF_6$. Отмечается [10], что структура и химический состав силикатов магния практически не влияют на процесс их взаимодействия с ГДФА, однако указывается [11], что характер процессов фторирования зависит от структуры минералов. Этот вопрос требует уточнения и системного изучения.

Использование продуктов фторирования силикатов магния возможно при получении разных видов керамики и керамических пигментов [12, 13]. Интерес в настоящее время представляют модифицированные ионами фтора биокерамика и стеклокерамические биокомпозиты [14, 15], фторсодержащая форстеритовая электрокерамика [16], а также люминофоры в системе MgO-SiO₂-MgF₂ [17, 18].

Потенциально метод фтораммонийного воздействия на природные минералы позволит получать магнезиальносиликатные материалы с заданными химическим и фазовым составами. Исследование процессов фторирования различных силикатов магния с целью регулирования химического состава сырья и фазового состава конечных керамических материалов является актуальным.

МЕТОДЫ АНАЛИЗА И ИСХОДНЫЕ МАТЕРИАЛЫ

Фазовый состав материалов исследовали на дифрактометре XRD-7000S (Shimadzu, Япония), элементный состав, морфологию и размер частиц — на сканирующем электронном микроскопе JSM-6000 (JEOL, Япония) с приставкой для энергодисперсионной спектроскопии. Термические исследования проводили на приборе STA 449 F3 Jupiter (Netzsch, Германия) при скорости нагрева 15 °С/мин. В качестве объектов исследования были выбраны материалы, содержащие силикаты магния разной структуры: островной (форстерит), цепочечной (энстатит) и слоистой (тальк). Химический и минеральный составы материалов приведены в табл. 1.

Поскольку количество примесных минералов в используемом сырье небольшое, расчеты составов смесей минералов с ГДФА проводили в предположении того, что в реакции фторирования участвует только структурный SiO₂ с образованием гипотетических нестехиометрических соединений промежуточного состава с заданным мольным отношением SiO₂ : MgO:

 $SiO_2 + 3NH_4HF_2 = (NH_4)_2SiF_6 + NH_3 + 2H_2O.$ (2)

Компонентный состав исследуемых смесей приведен в табл. 2. Материалы предварительно измельчали сухим способом до получения дисперсных порошков с удельной поверхностью 0,5-0,7 м²/г, измеренной на приборе Ouantachrome NOVA 2200 e. С учетом того что ГДФА проявляет высокую химическую активность в расплавленном состоянии (*T*_{пл} = 127 °C) [19], фторирование проводили путем термообработки смесей минеральных порошков с ГДФА при 180 °С в течение 1 ч. После измельчения профторированного материала нелетучие продукты фторирования отделяли от гексафторосиликата аммония (ГФСА) путем сублимации последнего при 400 °С в течение 4 ч. Полученный материал в виде прессованных дисков обжигали в камерной электропечи с карбидкремниевыми нагревателями при 1100-1300 °C с выдержкой 2 ч при конечной температуре.

Гаолица 1. Химическии	и минеральныи	составы сы	рьевых мате	риалов

Моториот	Химический состав, мас. %					Минеральный		
материал	SiO_2	Al ₂ O ₃	Fe_2O_3	MgO	CaO	$Na_2O + K_2O$	$\Delta m_{ ext{прк}}$	состав
Онотский тальк	64,53	2,15	0,66	28,00	0,03	0,02	4,62	Тальк, примеси кварца
Энстатитовый концентрат (Памир)	60,72	0,08	4,45	34,61	0,02	0,07	0,05	Энстатит
Форстеритовый концентрат (Памир)	43,54	0,05	1,30	54,55	0,03	0,01	0,52	Форстерит, примеси талька

ГДФА : мине-		SiO2 : MgO в конечных	IgO Содержан ных шихте, ма				
Смесь	рал, моль/моль	продуктах, моль/моль	минерал	ГДФА			
	Ģ	₽орстерит					
F-0	0,0	0,50	100,0	0,0			
F-1	0,3	0,45	89,2	10,8			
F-2	0,6	0,40	80,4	19,6			
F-3	0,9	0,35	73,3	26,7			
F-4	1,2	0,30	67,3	32,7			
F-5	1,5	0,25	62,2	37,8			
	Энстатит						
E-0	0,0	1,00	100,0	0,0			
E-1	0,3	0,90	85,4	14,6			
E-2	0,6	0,80	74,6	25,4			
E-3	0,9	0,70	66,2	33,8			
E-4	1,2	0,60	59,5	40,5			
E-5	1,5	0,50	54,0	46,0			
Тальк							
T-0	0,0	1,33	100,0	0,0			
T-1	1,5	1,17	81,6	18,4			
T-2	3,0	1,00	68,9	31,1			
T-3	4,5	0,83	59,6	40,4			
T-4	6,0	0,67	52,6	47,4			
T-5	7,5	0,50	47,0	53,0			

Таблица 2. Компонентный состав смесей минералов с ГДФА

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В исследуемых системах минералов с ГДФА возможно протекание реакций, различающихся глубиной фторирования и конечными продуктами реакций. Оценку термодинамической возможности протекания наиболее вероятных реакций фторирования проводили путем расчета изобарно-изотермического потенциала ΔG_T^0 согласно [20], результаты расчетов представлены в табл. 3. Полученные значения ΔG_T^0 свидетельствуют о возможности протекания реакций между исследуемыми силикатами магния и ГДФА выше температуры его плавления (400 K).

На рис. 1 показаны результаты синхронного термического анализа для смесей с мольным отношением минерал : ГДФА, равным 1 : 1. Общим для этих смесей является отсутствие экзотермических эффектов, соответствующих взаимодействию минералов с ГДФА. Это обусловлено тем, что процесс взаимодействия силикатов с ГДФА протекает непрерывно в широком температурном диапазоне, вследствие чего на кривых термического анализа не наблюдается четко выраженных экзотермических эффектов, что согласуется с ранее полученными данными [11, 19].

Для смеси форстерита с ГДФА (см. рис. 1, а) наблюдается сложный по форме эндотермический эффект в диапазоне 80–170 °С с минимумом при 118.1 °C. сопровождающийся уменьшением массы на 9,04 %. Этот эффект является результатом наложения следующих эндотермических эффектов: плавления ГДФА, а также удаления из системы газообразных продуктов реакции фторирования (аммиака и воды). Сложный эндотермический эффект в смеси энстатита с ГДФА (см. рис. 1, б) в диапазоне 71–131 °С с минимумом при 119,0 °C является следствием наложения эффектов плавления ГДФА и удаления газообразных аммиака и воды. Уменьшение массы образца (6,01 %) происходит практически непрерывно со слабо выраженными ступенями на кривой ТГ.

Для смеси талька с ГДФА (см. рис. 1, в) наблюдается ступенчатое уменьшение массы (суммарное $\Delta m = 3,51$ %), что сопровождается двумя эндотермическими эффектами. Первый эндотермический эффект в диапазоне 80-130 °С с минимумом при 108,9 °С обусловлен удалением воды, образовавшейся вследствие активного взаимодействия ГДФА с тальком в твердой фазе. В его структуре присутствуют гидроксильные группы, которые при взаимодействии минерала с фторирующим агентом высвобождаются в виде Н₂О. Присутствие воды в системе способствует растворению ГДФА и перекристаллизации его в виде фторида аммония NH₄F вследствие гидролиза [19]. Эндотермический эффект в диапазоне 130-180 °C с минимумом при 156,5 °C соответствует плавлению фторида аммония с разложением, а также удалению газообразных продуктов реакции из системы.

таолица 3. Значение до, кдж/моль, реакции фторирования при различных температурах							
№ п/п	298 K	400 K	500 K	600 K	700 K	800 K	
		$2MgO \cdot SiO_2 + 3$	$\mathrm{NH}_4\mathrm{HF}_2 = 2\mathrm{MgO} +$	$(NH_4)_2SiF_6 + NH_3 +$	$2H_2O$		
1	38,8	-8,2	-53,0	-96,7	-139,3	-180,8	
	Mg	$gO \cdot SiO_2 + 1,5NH_4HF$	$F_2 = 0.5(2MgO \cdot SiO_2)$	$+ 0,5(NH_4)_2SiF_6 + 0$	$,5NH_3 + H_2O$		
2	-8,2	-31,8	-54,3	-76,3	-97,8	-118,9	
$MgO \cdot SiO_2 + 3NH_4HF_2 = MgO + (NH_4)_2SiF_6 + NH_3 + 2H_2O$							
3	11,1	-35,8	-80,8	-124,6	-167,4	-209,3	
$3MgO \cdot 4SiO_2 \cdot H_2O + 3NH_4HF_2 = 3(MgO \cdot SiO_2) + (NH_4)_2SiF_6 + NH_3 + 3H_2O$							
4	-35,7	-101,5	-164,9	-227,3	-228,7	-349,2	
$3MgO \cdot 4SiO_2 \cdot H_2O + 7,5NH_4HF_2 = 1,5(2MgO \cdot SiO_2) + 2,5(NH_4)_2SiF_6 + 2,5NH_3 + 6H_2O$							
5	-60,4	-196,8	-327,7	-456,1	-582,1	-705,8	
$3MgO \cdot 4SiO_2 \cdot H_2O + 12NH_4HF_2 = 3MgO + 4(NH_4)_2SiF_6 + 4NH_3 + 9H_2O$							
6	-2,2	-209,0	-407,2	-601,1	-791,0	-977,0	

Таблица З. Значение ΔG⁰, кДж/моль, реакций фторирования при различных температура

Для всех исследованных смесей общим является интенсивный эндотермический эффект с минимумом при 240–260 °С, который сопровождается высокими потерями массы образцов (от 11 до 25 %). Этот эффект связан с сублимацией ГФСА [21], в этом интервале температур происходит также ступенчатое разложение фтормагниевых аммиачных комплексов [10]. Экзотермический эффект на кривых ДСК с максимумом при 318–320 °С, который не сопровождается изменением массы, связан с кристаллизацией

Рис. 1. Результаты синхронного термического анализа смесей форстерита с ГДФА (*a*), энстатита с ГДФА (*б*) и талька с ГДФА (*в*) в соотношении 1:1 моль/моль

фторида магния после разложения (NH₄)₂MgF₄ [10].

Наиболее интенсивно взаимодействуют с ГДФА поверхностные слои зерен минералов, которые подвергаются разрушающему действию фторирующего агента с образованием ГФСА. Сублимация ГФСА из продуктов фторирования обеспечивает обескремнивание минералов [22], значительно разрушая их при этом, что приводит к аморфизации поверхностных слоев отдельных зерен, а также к образованию мелкодисперсных частиц (рис. 2). Кроме того, ГФСА

Рис. 2. Микрофотографии исходных минералов (*a*), образцов после фторирования (*б*) и образцов после сублимации ГФСА (*в*): 1 — форстерит; 2 — энстатит; 3 — тальк

Рис. 3. Дифрактограммы состава F-3 на основе форстерита: *а* — исходный форстерит; *б* — после фторирования; *в* — после сублимации ГФСА; □ — форстерит; Δ — тальк; ○ — ГФСА; □ — фторид магния

Рис. 4. Дифрактограммы состава Е-3 на основе энстатита: *а* — исходный энстатит; *б* — после фторирования; *в* — после сублимации ГФСА; □ — энстатит; ○ — ГФСА; △ — гептафторосиликат аммония; □ — фторид магния

Рис. 5. Дифрактограммы состава Т-3 на основе талька: *а* — исходный тальк; *б* — после фторирования; *в* — после сублимации ГФСА; △ — тальк; ○ — ГФСА; □ — фторид магния

оказывает дополнительное деструктивное воздействие на минеральные частицы, поскольку способен выступать в качестве фторирующего агента при температурах, близких к температуре сублимации [23].

По результатам рентгенофазового анализа (рис. 3-5), основным фиксируемым продуктом реакции взаимодействия форстерита и талька с ГДФА является ГФСА, количество которого возрастает с увеличением содержания в шихте ГДФА. В результате фторирования энстатита образуется смесь фторосиликатов аммония (NH₄)₂SiF₆ и (NH₄)₃SiF₇. При этом увеличение содержания ГДФА в шихте приводит к интенсификации образования гептафторосиликата аммония за счет роста количества в реакционном пространстве фторирующего агента.

После фтораммонийной обработки минералов наблюдается уменьшение их рентгеновских рефлексов на дифрактограммах (рис. 6), связанное с деструкцией и аморфизацией исходных силикатов. Таким образом, минералы подвергаются разрушению с сохранением части минеральной фазы.

После стадии сублимационной очистки в полученных материалах было зафиксировано появление фазы слабозакристаллизованного фторида магния (о чем свидетельствуют уширенные рефлексы на дифрактограммах), который образовался при разложении первичного продукта реакции — тетрафтормагната аммония (NH₄)₂MgF₄. Отсутствие рефлексов (NH₄)₂MgF₄ на дифрактограммах после фторирования может быть связано с малым ее количеством или рентгеноаморфным состоянием, а также с возможностью образования рентгеноаморфной смеси (NH₄)₂MgF₄ и NH₄MgF₃ [24].

При обжиге оставшейся после сублимационной очистки от ГФСА минеральной части продуктов фторирования силикатов магния происходят кристаллизация аморфных фаз и образование термодинамически устойчивых соединений. Обескремнивание минералов с помощью ГДФА привело после обжига к образованию периклаза в составах на основе фторированных форстерита и энстатита (табл. 4). Фторид магния участвует в образовании кристаллической фазы норбергита $2MgO \cdot SiO_2 \cdot MgF_2$, а также оказывает флюсующее действие при обжиге силикатных материалов и входит в состав расплава, который при охлаждении склонен к образованию рентгеноаморфной стеклофазы [25].

Для материалов на основе фторированного талька после обжига характерным является образование смеси островных силикатов (форстерита и норбергита) с энстатитом; при этом повышение температуры обжига и степени фторирования талька приводит к увеличению количества островных силикатов и фторси-

32

Рис. 6. Зависимость интенсивностей рентгеновских рефлексов кристаллических фаз от отношения ГДФА : минерал в исходной смеси: *а* — после стадии фторирования; *б* — после сублимации ГФСА; *1* — форстерит; *2* — энстатит; *3* — тальк

Таблица 4. Фазовый состав обожженных при разной температуре материалов на основе форстерита и энстатита, подвергнутых фтораммонийной обработке

Состав	1100 °C	1200 °C	1300 °C				
Составы на основе форстерита							
F-0	Форстерит	Форстерит	Форстерит				
F-1	Форстерит	Периклаз, форстерит	Периклаз, форстерит				
F-2	Форстерит	Периклаз, форстерит	Периклаз, форстерит				
F-3	Периклаз, форстерит, норбергит	Периклаз, форстерит, норбергит	Периклаз, форстерит				
F-4	Периклаз, форстерит, норбергит	Периклаз, форстерит, норбергит	Периклаз, форстерит, норбергит				
F-5	Периклаз, форстерит, норбергит	Периклаз, форстерит, норбергит	Периклаз, форстерит, норбергит				
Составы на основе энстатита							
E-0	Энстатит	Энстатит	Энстатит				
E-1	Энстатит, форстерит	Энстатит, форстерит	Энстатит, форстерит				
E-2	Энстатит, форстерит	Энстатит, форстерит	Энстатит, форстерит				
E-3	Энстатит, периклаз, норбергит	Периклаз, форстерит, норбергит	Периклаз, форстерит, норбергит				
E-4	Энстатит, периклаз, норбергит Периклаз, форстерит, норбергит Периклаз, норбергит						
E-5	Периклаз, норбергит	Периклаз, норбергит	Периклаз, норбергит				
8 -							
			в				

Рис. 7. Зависимость интенсивности рентгеновских рефлексов энстатита, форстерита и норбергита от степени фторирования талька при температуре обжига 1100 (*a*), 1200 (*б*) и 1300 °С (*в*): ■ — энстатит; ● — форстерит; ▲ — норбергит

ликатов (рис. 7). Отсутствие периклаза обусловлено его взаимодействием с энстатитом с образованием силикатов магния островной структуры:

 $MgO \cdot SiO_2 + MgO = 2MgO \cdot SiO_2, \qquad (3)$

 $MgO \cdot SiO_2 + MgO + MgF_2 = 2MgO \cdot SiO_2 \cdot MgF_2.$ (4)

Образование фторсиликатов гумитовой группы (с общей формулой *n*Mg₂SiO₄·MgF₂, где 4 ≥ *n* ≥ 1) свидетельствует о высокой реакционной способности продуктов, полученных после фтораммонийной обработки минералов. Согласно [26, 27] синтез подобных веществ путем твердофазной реакции из соответствующих оксидов в присутствии фторида магния протекает при умеренных температурах (1300–1400 °C), однако при этом требуется длительная выдержка от 12 до 48 ч.

Библиографический список

1. Стрельникова, И. Е. Получение высокочистого форстерита методом алкоксотехнологии / И. Е. Стрельникова, Е. Е. Гринберг, А. В. Беляков [и др.] // Физическая мезомеханика. — 2004. — Т. 7. — № Спец. 2. — С. 97-100.

2. *Малявский, Н. И.* Новый метод золь-гель синтеза ортосиликатов / *Н. И. Малявский, В. В. Зверева* // Вестник МГСУ. — 2013. — № 10. — С. 140–146.

3. *Fathi, M. H.* Mechanochemical synthesis and characterization of nanostructure forsterite bioceramics / *M. H. Fathi, M. Kharaziha* // Int. J. Mod. Phys. B. — 2008. — Vol. 22. — P. 3082–3091. DOI: 10.1142/S0217979208047948.

4. **Балкевич, В. Л.** Техническая керамика / В. Л. Балкевич. — М. : Стройиздат, 1984. — 256 с.

5. *Аветиков, В. Г.* Магнезиальная электротехническая керамика / *В. Г. Аветиков, Э. И. Зинько.* — М. : Энергия, 1973. — 184 с.

6. **Белинская, Г. В.** Технология электровакуумной и радиотехнической керамики / Г. В. Белинская, Г. А. Выдрик. — М. : Энергия, 1977. — 336 с.

7. **Кащеев, И. Д.** Химическая технология огнеупоров / И. Д. Кащеев, К. К. Стрелов, П. С. Мамыкин. — М. : Интермет Инжиниринг, 2007. — 752 с.

8. **Вакалова, Т. В.** Физико-химические особенности синтеза муллита в смесях кварцпирофиллитовой породы со фторирующим компонентом / *Т. В. Вакалова, В. В. Кравченко, В. В. Горбатенко //* Новые огнеупоры. — 2014. — № 4. — С. 27–32.

9. *Макаров, Д. В.* Взаимодействие различных минералов с гидродифторидом аммония / *Д. В. Макаров, Д. П. Нестеров //* Минералогия техногенеза. — 2007. — Т. 8. — С. 165–176.

10. **Нестеров**, **Д. П.** Взаимодействие оксида и силикатов магния с гидродифторидом аммония / Д. П. Нестеров, Д. В. Макаров, В. Т. Калинников // Журнал неорганической химии. — 2006. — Т. 51, № 5. — С. 780-784.

11. **Куриленко, Л. Н.** О фторировании кремнийсодержащих минералов гидродифторидом аммония / Л. Н. Куриленко, Н. М. Лапташ, Е. Б. Меркулов, В. Ю. Глу-

ЗАКЛЮЧЕНИЕ

Способ фтораммонийной обработки магнезиальных силикатов с различным типом кристаллической структуры (форстерита, энстатита, талька) является эффективным технологическим приемом управления фазовым составом материалов на их основе с увеличением магнезиальной составляющей за счет удаления структурного и примесного SiO₂ из компонентов минеральных систем.

Процесс фторирования приводит к значительной деструкции минеральных зерен при образовании и последующем сублимационном удалении ГФСА. При обжиге образовавшихся аморфных силикатов магния нестехиометрического состава происходит их структурная перестройка в кристаллические силикаты островного строения, количество и состав которых зависят от степени фторирования.

щенко // Электронный журнал «Исследовано в России». — 2002. — Т. 5. — С. 1465-1471.

12. **Pogrebenkov**, V. M. Production of ceramic pigments with diopside structure from talc / V. M. Pogrebenkov, M. B. Sedelnikova, V. I. Vereshchagin // Glass and Ceramics. — 1998. — № 55. — P. 148–150. DOI: 10.1007/BF02694728.

13. **Pogrebenkov V. M.** Ceramic pigments based on natural minerals / V. M. Pogrebenkov, M. B. Sedelnikova // Glass and Ceramics. — 2002. — № 59. — P. 396–399. DOI: 10.1023/A:1022536525362.

14. **Shumkova**, **V. V.** Hydroxyapatite-wollastonite bioceramics / V. V. Shumkova, V. M. Pogrebenkov, A. V. Karlov [et al.] // Glass and Ceramics. $-2000. - N \ge 57. - P. 350-353.$ DOI: 10.1023/A:1007198521974.

15. **Pogrebenkov, V. M.** Apatite-diopside bioglass ceramic composites / V. M. Pogrebenkov, V. V. Shumkova, V. V. Pogrebenkova // Glass and Ceramics. — 2004. — № 61. — P. 87–89. DOI: 10.1023/B:GLAC.0000034054.03048.d7.

16. **Вахула, Я. И.** Исследование модификации структуры порошка форстерита фтор-ионами / Я. И. Вахула, И. Д. Борщищин, И. В. Луцюк // Восточно-Европейский журнал передовых технологий. — 2010. — № 1 (43). — С. 56-59.

17. **Казинкин, О. Н.** Неорганические люминофоры / *О. Н. Казинкин, Л. Я. Марковский, И. А. Миронов* [и др.]. — Л. : Химия, 1975. — 192 с.

18. **Shamshurin, A. V.** Decay kinetics of Mn^{2+} ion luminescence in Mg, Zn and Cd silicates and fluorides / A. V. Shamshurin, E. A. Zhikhareva, E. V. Malinka // Functional Materials. -2005. - Vol. 12, $N \ge 2$. - P. 240–243.

19. **Крайденко, Р. И.** Фтораммонийное разделение многокомпонентных силикатных систем на индивидуальные оксиды : автореф. дис. ... канд. хим. наук : 05.17.02 / Крайденко Роман Иванович. — Томск, 2008. — 21 с.

20. Бабушкин, В. И. Термодинамика силикатов / В. И. Бабушкин, Г. М. Матвеев, О. П. Мчедлов-Петросян ; под общ. ред. О. П. Мчедлова-Петросяна. — М. : Стройиздат, 1972. — 351 с.

21. Федин, А. С. Исследование процесса сублимации гексафторосиликата аммония / А. С. Федин, Ф. А. Воро-

шилов, А. С. Кантаев, О.А. Ожерельев // Известия Томск. Политехн. ун-та. — 2013. — Т. 323, № 3. — С. 23–27.

22. Andreev, V. A. Studying the utilization techniques of ammonium hexafluorosilicate / V. A. Andreev, A. S. Buinovskiy, A. N. Dyachenko, R. I. Kraidenko // Bulletin of the Tomsk Polytechnic University. — 2007. — Vol. 311, $\mathbb{N} \ge 3$. — P. 31–34.

23. **Melnichenko, E. I.** $(NH_4)_2SiF_6$ evaporation in the presence of SiO_2 / E . *I. Melnichenko, G. F. Krysenko, M. N. Melnichenko //* Russian Journal of Inorganic Chemistry. — 2006. — Vol. 51, Nº 1. — P. 27–31. DOI: 10.1134/S0036023606010050.

24. *Subias, G.* Phase transition and crystal structures of (NH₄)₂MgF₄ / *G. Subias, E. Palacios, J. Blasco, J. Garcia-Ruiz* // J. Phys. : Condens. Matter. — 1996. — Vol. 8. — P. 8971–8982.

25. **Анфилогов, В. Н.** Строение и свойства силикатногалогенидных расплавов : монография / В. Н. Анфилогов, И. Б. Бобылев, Г. И. Анфилогова, Н. А. Зюзева. — М. : Наука, 1990. — 109 с.

26. *White, T. J.* Electron microscope study of the humite minerals: I. Mg-rich specimens / *T. J. White, B. G. Hyde //* Phys. Chem. Miner. — 1982. — Vol. 8. — P. 55–63. DOI: 10.1007/BF00309014.

27. *Hinz, W.* Phase equilibrium data for the system $MgO-MgF_2-SiO_2 / W$. *Hinz, P. O. Kunth //* Am. Mineral. — 1960. — Vol. 45. — P. 1198–1210.

Получено 21.01.20 © Ш. М. Шарафеев, В. М. Погребенков, 2020 г.

