Бейюэ Ма^{1, 2} (🖂), Юэ Инь¹, Цян Чжу³, Инин Чжай¹, Ин Ли¹, Гуанцзян Ли², Цзинкунь Юй¹

- ¹ Северовосточный университет, отделение материаловедения и металлургии, г. Шеньян, Китай
- ² Вуханский университет науки и технологии, государственная лаборатория огнеупоров и металлургии, г. Вухан, Китай
- ³ Университет Воллонгонга, отделение механики, материаловедения и инжиниринга мехатроники, шт. Новый Южный Уэльс, Австралия

УДК 666.762.36.017+666.762.11.017]:620.178.16(590)(94)

ШЛАКОУСТОЙЧИВОСТЬ ОГНЕУПОРОВ НА ОСНОВЕ MgAl₂O₄ и Al₂O₃

Исследованы коррозия шлаком и шлакоустойчивость огнеупоров MgAl₂O₄, MgAl₂O₄–ZrO₂, MgAl₂O₄–ZrO₂-CaO, Al₂O₃ и Al₂O₃–ZrO₂–SiC. Исследование проводили с применением тигельного метода при 1873 К в течение 2 ч. Все огнеупоры продемонстрировали отличную стойкость к коррозии шлаком; глубина коррозии составила менее 1,10 мм. Корундовые огнеупоры почти не подверглись коррозии расплавленным шлаком; глубина коррозии всего 0,05 мм. Глубина проникновения шлака (шлакоустойчивость) варьировалась от 13,79 до 24,48 мм. Особенно хороший показатель стойкости к проникновению шлака обнаружен у Al₂O₃–ZrO₂–SiC-огнеупоров; глубина проникновения шлака всего 13,79 мм.

Ключевые слова: оксидные огнеупоры, MgAl₂O₄, Al₂O₃, коррозия, шлакоустойчивость.

введение

В последние годы уделяется большое внимание некоторым видам огнеупоров для производства чистых марок стали: корундографитовым (Al₂O₃-C) и периклазоуглеродистым (MgO-C) с низким содержанием графита [1-3]. Огнеупоры из алюмомагнезиальной шпинели (MgAl₂O₄) и корундовые огнеупоры (Al₂O₃) имеют значительные преимущества по сравнению с углеродсодержащими. Они не только обладают хорошей стойкостью при высоких температурах [4], но и содержат свободный углерод и кремний, благодаря чему можно снизить попадание примесей в расплавленную сталь [5].

Чтобы улучшить свойства алюмомагнезиальных и корундовых материалов и сделать их пригодными для производства чистых марок стали, были проведены многочисленные исследования. Одна из задач, интересующих исследователей, — разработка MgAl₂O₄- и Al₂O₃композитов [6-8]. Гомес и др. (Gómez et al.) [6] получили MgAl₂O₄- и MgAl₂O₄-Al₂O₃-композиты микроволновым способом при 800 В и 2,45 Гц в течение 4,5 мин. Заки и др. (Zaki et al.) [7] синтезировали MgAl₂O₄-MoSi₂- и MgAl₂O₄-Mo₅Si₃композиты под высоким давлением. Еще одна исследовательская работа посвящена выбору

> ⊠ Бейюэ Ма E-mail: maby@smm.neu.edu.cn

различных добавок, вводимых в MqAl₂O₄- и Al₂O₃-матрицу, и улучшению спекаемости, термостойкости и механических свойств композитов [9–12]. Нагизаде и др. (Naghizadeh et al.) [9] обнаружили, что добавка TiO₂ сильно влияет на образование и микроструктуру MgAl₂O₄ при 1873 К на воздухе и в восстановительной среде. Сахин и др. (Sahin et al.) [10] исследовали воздействие добавки ZrSiO₄-3 мол. % Y₂O₃ на механические свойства и термостойкость MqO-MqAl₂O₄-композитов. Была изучена также стойкость алюмомагнезиальных и корундовых материалов к коррозии шлаком [13-17]. Однако работ по коррозии шлаком и стойкости различных видов MgAl₂O₄- и Al₂O₃-материалов к проникновению шлака недостаточно. В настоящей работе исследованы коррозия шлаком и проникновение шлака в различные виды оксидных огнеупоров, таких как MqAl₂O₄ (MA), MgAl₂O₄–ZrO₂ (MA–ZrO₂), MgAl₂O₄–ZrO₂–CaO (MA-ZrO₂-CaO), Al₂O₃ и Al₂O₃-ZrO₂-SiC.

ХОД ЭКСПЕРИМЕНТА

Изготовление огнеупорных тиглей

Для исследования использовали следующие компоненты: плавленую шпинель MgAl₂O₄ (два вида MA, одну с 78 мас. % Al₂O₃ и 21 мас. % MgO, другую с 70 мас. % Al₂O₃ и 29 мас. % MgO, зерновой состав: 2–1, 1–0 и 0,074 мм), плавленый белый корунд (99 мас. %, зерновой состав 2–1, 1–0 и 0,074 мм), порошок Al₂O₃ (99 мас. %, зерно 0,044 мм), плавленый ZrO₂ (98 мас. %,

38

Таблица 1. Состав огнеупорных тиглей

Номер состава	Компонент	Массовая доля компонента, %
1# (MA)	78 MA	100
2# (MA_ZrO ₂)	78 MA	95
	ZrO_2	5
3# (MA–ZrO ₂ –CaO)	70 MA	90
	ZrO_2	5
	CaO	5
4# (Al ₂ O ₃)	Al_2O_3	100
5# (Al ₂ O ₃ –ZrO ₂ –SiC)	Al_2O_3	93
	ZrO_2	5
	SiC	2

* Массовая доля частиц различного гранулометрического состава (2–1, 1–0 и 0,074 мм) в сырье, включая плавленую MgAl₂O₄ и плавленый белый корунд, составляет соответственно 3 : 3 : 4.

зерно 0,044 мм), порошок СаО (90 мас. %, зерно 0,044 мм) и порошок SiC (98 мас. %, зерно 0,044 мм). Из сырьевых материалов готовили массы разных составов (1#-5#, табл. 1). Из масс под давлением 200 МПа прессовали тигли диаметром 70 и высотой 60 мм (внутреннее пространство тигля 30×30 мм). Образцы тиглей были высушены при 393 К и обожжены при 1873 К в течение 2 ч в высокотемпературной печи сопротивления.

Для изготовления экспериментального шлака (CaO–SiO₂–Al₂O₃–CaF₂–Li₂O) использовали такие химические реагенты, как CaCO₃, SiO₂, Al₂O₃, CaF₂ и Li₂O, в соотношении 40:45:5:5:5. Смесь порошков измельчали в течение 3 ч.

Коррозионная стойкость и глубина проникновения шлака

Для изучения коррозии и проникновения шлака в огнеупоры использовали тигельный метод. Эксперимент заключался в следующем. Смесь из исходных порошков тщательно высушивали при 393 К, 20 г смеси помещали в огнеупорный тигель, который, в свою очередь, устанавливали в графитовый тигель с крышкой. Тигли нагревали до 1873 К в течение 2 ч, скорость нагрева 276 К/мин. После охлаждения печи до комнатной температуры тигли извлекали из печи, разрезали вдоль оси и штангенциркулем замеряли глубину коррозии и глубину проникновения шлака.

Микроструктуру тиглей изучали с помощью растрового электронного микроскопа (SEM), а различные их зоны, такие как шлаковая корочка, переходная и наименее измененная зоны, — с помощью энергорассеивающего спектрального анализа (EDS). Макроструктуру тиглей исследовали по фотографиям, снятым с помощью цифровой камеры.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Макроструктура

На рис. 1 показан разрез огнеупорных тиглей после испытаний на коррозию шлаком. Обна-

Рис. 1. Вид в разрезе тиглей 1#-5# (см. табл. 1) после испытаний на коррозию

Рис. 2. Сравнение показателей глубины коррозии шлаком *С* и глубины его проникновения *P* в тигли 1#-5# (см. табл. 1) после испытания

ружена явная разница в показателях коррозии и в глубине проникновения шлака в различные огнеупоры. Огнеупоры на основе MgAl₂O₄ (тигли 1#-3#) подверглись коррозии в разной степени. На тиглях 1# и 2# обнаружены крупные трещины, заметная коррозия и области проникновения шлака, на тигле 3# — трещины и поры, свидетельствующие о его глубокой коррозии. Судя по макроструктуре образцов, глубина проникновения шлака в тигель 3# менее значительна, чем в тигли 1# и 2#. Как видно из разреза тиглей 4# и 5#, корундовые огнеупоры почти не подверглись коррозии шлаком; заметных трещин или пор на них не обнаружено, плотность макроструктуры не нарушена. Глубокое проникновение шлака произошло в образце 4#. Это означает, что показатели стойкости к коррозии и к проникновению шлака в тигель 5# сравнимы с показателями тиглей 1#-4#.

Коррозионная стойкость и шлакоустойчивость огнеупоров

На рис. 2 показано сравнение глубины коррозии шлаком и глубины его проникновения в испытуемые тигли. Видно, что коррозионная стойкость корундового материала (тигель 4#) выше, чем у остальных тиглей; глубина коррозии корундового материала всего 0,05 мм. Коррозия материалов на основе MqAl₂O₄ (тигли 1#-3#) одинакова, глубина коррозии примерно 1,0 мм. Таким образом, материалы на основе Al₂O₃ и MqAl₂O₄ обладают хорошей коррозионной стойкостью. Глубина коррозии Al₂O₃-ZrO₂-SiC-материала (тигель 5#) составила 0,73 мм, т. е. коррозионная стойкость этого материала также хорошая. Кроме того, обнаружено, что шлакоустойчивость тиглей 1#-4# достигает примерно 23 мм. наилучшая шлакоустойчивость у образца 5#. Из рис. 1 и 2 можно сделать вывод, что Al₂O₃-ZrO₂-SiC-огнеупоры являются подходящими для производства чистой стали.

Микроструктура

На рис. 3 представлены SEM-фотографии, EDSспектры и содержание элементов в MgAl₂O₄огнеупорах (образец 1#) после испытания на коррозию. Огнеупоры оставались плотными, явных признаков коррозии не наблюдалось. В образце 1# содержание Mg и Al возрастает, а O, Si и Ca снижается в направлении от шлаковой корочки к переходной и наименее измененной зонам. Это хорошо согласуется с данными

Зона	0		Mg		Al		S	i	Ca	
	мас. %	ат. %	мас. %	ат. %	мас.%	ат. %	мас. %	ат. %	мас. %	ат. %
а	42,21	55,18	11,21	9,64	38,88	30,14	4,56	3,40	3,14	1,64
б	40,20	53,00	12,21	10,59	41,37	32,33	3,59	2,70	2,62	1,38
в	35,18	47,40	12,90	11,44	49,43	39,49	1,43	1,10	1,06	0,57

Рис. 3. SEM-фотографии, EDS-спектры различных зон образца 1# (MA) и содержание элементов в зонах образца 1# после испытания на коррозию: *a* — шлаковая корочка; *б* — переходная зона; *в* — наименее измененная зона

Зона	0		Mg		Al		Si		Ca		Zr	
	мас. %	ат. %	мас. %	ат. %	мас. %	ат. %	мас.%	ат. %	мас. %	ат. %	мас. %	ат. %
a	37,10	50,89	11,44	10,32	40,78	33,17	3,09	2,41	4,48	2,45	3,12	0,75
б	37,17	51,03	11,45	10,34	41,46	33,75	2,79	2,18	3,19	1,75	3,94	0,95
в	35,18	49,25	12,08	11,13	44,53	36,97	0,41	0,32	0,41	0,32	6,52	1,60

Рис. 4. SEM-фотографии, EDS-спектры различных зон образца 2# (MA–ZrO₂) и содержание элементов в зонах *a* – в образца 2# после испытания на коррозию

20110	0		Mg		Al		Si		Ca		Zr	
JOHA	мас. %	ат. %	мас. %	ат. %	мас. %	ат. %	мас.%	ат. %	мас. %	ат. %	мас. %	ат. %
а	39,86	54,68	11,27	10,17	35,36	28,76	1,59	1,24	7,41	4,06	4,52	1,09
б	39,01	53,74	11,01	9,98	37,47	30,61	0,77	0,61	7,25	3,99	4,49	1,08
в	38,29	52,93	11,38	10,35	37,55	30,78	0,77	0,61	7,82	4,32	4,19	1,02

Рис. 5. SEM-фотографии, EDS-спектры различных зон образца *3*# (MA–ZrO₂–CaO) и содержание элементов в зонах *a* – *в* образца *3*# после испытания на коррозию

по общим тенденциям коррозии и шлакоустойчивости. Основными компонентами шлака являются SiO₂ и CaO. Их содержание составляет соответственно 40 и 45 мас. %. Содержание Si, Ca и O в шлаковой корочке максимальное и составляет 4,56, 3,14 и 42,21 мас. % соответственно, в переходной зоне — соответственно 3,59, 2,62 и 40,20 мас. %, что ниже, чем в шлаковой корочке. В наименее измененной зоне коррозии и проникновения шлака нет. Появление Si, Ca и O объясняется их присутствием в сырье. Следует отметить, что углерод появляется в результате науглероживания, вызванного использованием графитовых тиглей.

В тигле 2# (MgAl₂O₄-ZrO₂) содержание Mg, Al и Zr возрастает, а O, Si и Ca снижается в направлении от шлаковой корочки к переходной и наименее измененной зонам (рис. 4). Содержание Si, Ca и O в шлаковой корочке достигает максимальных величин — 3,09, 4,48 и 37,10 мас. % соответственно, в переходной зоне соответственно 2,79, 3,19 и 37,17 мас. %. Коррозии и проникновения шлака в наименее измененной зоне не произошло. Появление Si, Ca и O в этой зоне обусловлено присутствием их в сырье.

На рис. 5 показаны SEM-фотографии, EDSспектры и содержание элементов в различных зонах образца *3*# (MgAl₂O₄–ZrO₂–CaO) после испытания на коррозию. Обнаружено, что шлаковая корочка, переходная и наименее измененная зоны образца *3*# достаточно плот-

Зона	0		Na		Al		S	li	Ca	
	мас. %	ат. %	мас.%	ат. %						
а	47,11	60,31	0,83	0,74	47,35	35,94	2,79	2,04	1,92	0,98
б	42,53	55,75	0,95	0,87	51,77	40,24	2,93	2,19	1,83	0,96
в	40,74	53,88	0,24	0,22	56,41	44,23	1,33	1,00	1,28	0,68

Рис. 6. SEM-фотографии, EDS-спектры различных зон образца 4# (Al₂O₃) и содержание элементов в зонах *a* – *в* образца 4# после испытания на коррозию

Зона	0		С		Al		Si		Ca		Zr	
	мас. %	ат. %										
a	35,03	47,18	4,40	7,89	48,42	38,67	4,98	3,82	2,47	1,33	4,71	1,11
б	35,26	45,82	7,18	12,42	47,51	36,61	5,05	3,74	0,93	0,48	4,07	0,93
в	33,80	40,57	16,73	26,74	39,79	28,31	4,49	3,07	0,81	0,39	4,39	0,92

Рис. 7. SEM-фотографии, EDS-спектры различных зон образца 5# (Al₂O₃-ZrO₂-SiC) и содержание элементов в зонах *a* – *в* образца 5# после испытания на коррозию

ные. Наблюдается небольшое количество пор. Размер пор зависит не только от размера пор в исходном образце, но и от степени коррозии и глубины проникновения шлака. В тигле 3# содержание Mg, Al и Ca возрастает, a O, Si и Zr снижается в направлении от шлаковой корочки к переходной и наименее измененной зонам. Следует отметить, что Са проник из СаО в расплавленный шлак и огнеупорный образец (MgAl₂O₄-ZrO₂-CaO), так что по содержанию Са невозможно судить о степени коррозии и глубине проникновения шлака. Содержание Si и О является важным показателем, по которому можно об этом судить. Содержание Si и O достигает максимальных величин в шлаковой корочке образца 3# — 1,59 и 39,86 мас. % соответственно. В переходной зоне проникновение шлака приводит к высокому содержанию Si и O (0,77 и 39,01 мас. % соответственно), что ниже, чем в шлаковой корочке. Было также обнаружено, что содержание Zr в различных зонах образца 3# не изменяется.

На рис. 6 показаны SEM-фотографии, EDSспектры и содержание элементов в различных зонах корундового образца 4# после испытания на коррозию. Обнаружено, что шлаковая корочка, переходная и наименее измененная зоны образца 4# достаточно плотные и почти не подверглись коррозии. Содержание Si и Ca уменьшается в направлении от шлаковой корочки к переходной и наименее измененной зонам. Содержание Si в шлаковой корочке и в наименее измененной зоне составило соответственно 2,79 и 1,33 мас. %. Содержание Са снизилось от 1,92 мас. % в шлаковой корочке до 1,28 мас. % в наименее измененной зоне. Таким образом, шлак проникает в корундовый материал.

На рис. 7 показаны SEM-фотографии, EDSспектры и содержание элементов в различных зонах образца 5# (Al₂O₃-ZrO₂-SiC) после испытания на коррозию. Видно, что шлаковая корочка, переходная и наименее измененная зоны образца 5# плотные. При переходе от шлаковой корочки к переходной и наименее измененной зонам содержание Al, O, Ca и Zr снижается. Содержание Са и О в шлаковой корочке достигает максимальных величин — 2,47 и 35,03 мас. % соответственно. Содержание Al, O, Si, Ca и Zr в переходной и наименее измененной зонах примерно одинаково, однако наблюдается некоторое проникновение шлака в эти зоны. В целом образец 5# обладает достаточными коррозионной стойкостью и шлакоустойчивостью.

Анализ коррозии шлаком и шлакоустойчивости

В табл. 2 приведены данные по открытой пористости и кажущейся плотности тиглей (образцы 1#-5#) после испытания на коррозию. Имеются явные различия в этих показателях образцов 1#-5#, отпрессованных при 200 МПа и спеченных при 1873 К в течение 2 ч. Пористость образца 3# достигла минимума (5,01 %). Пористость образца 1# была самой высокой — 17,84 %. Кажущаяся плотность образца 5# достигла максимальной величины — 3,30 г/см³.

Разница в показателях пористости и плотности образцов 1#-5# сильно зависит от свойств того или иного сырьевого материала, из которого были изготовлены огнеупорные тигли. Именно эти различия в свойствах сырья сильно влияют на коррозию шлаком и на стойкость к его проникновению в огнеупоры на основе MgAl₂O₄ и Al₂O₃. Кажущаяся плотность образцов 4# и 5# оказалась выше (см. табл. 2), а их коррозионная стойкость и стойкость к проникновению — слабее (см. рис. 1 и 2).

Таблица 2. Физические свойства образцов тиглей 1#-5# после испытания

Физические свойства	1#	2#	3#	4#	5#
Открытая пористость, %	17,84	16,96	5,01	15,71	11,27
Кажущаяся плотность, г/см ³	2,82	2,90	3,11	3,23	3,30

Плотные материалы способны снизить коррозию шлаком и его проникновение. Эти показатели зависят не только от физических свойств образцов, таких как открытая пористость и кажушаяся плотность. но и от компонентов. из которых состоят огнеупоры. Из рис. 1 и 2 видно, что показатели стойкости к коррозии и проникновению шлака у материалов на основе $MgAl_2O_4$ (образцы 1#-3#) одинаковы, у образца 3#, содержащего СаО, сравнимы с показателями образцов 1# и 2#. Возможно, причина заключается в том, что СаО из образца 3# и шлака (40 % CaO, 45 % SiO₂, 5 % Al₂O₃) вступает в реакцию с SiO₂ и Al₂O₃ (из шлака) и образует небольшие количества соединений CaO-SiO₂ и CaO–SiO₂–Al₂O₃ [16], которые заполняют часть пор и немного повышают стойкость к проникновению в огнеупоры MgAl₂O₄-ZrO₂-CaO.

У корундового материала (образец 4#) показатель коррозионной стойкости был самым лучшим (образцы 1#-5#, см. рис. 1 и 2). Однако в этот материал глубоко проникает шлак, что объясняется образованием соединений CaO–SiO₂ и CaO–SiO₂–Al₂O₃. В системе CaO–SiO₂ и CaO–SiO₂–Al₂O₃ существуют некоторые легкоплавкие соединения [16, 18], такие как 3CaO·SiO₂, 2CaO·SiO₂, CaO·SiO₂, 12CaO·7Al₂O₃, 3CaO·Al₂O₃, CaO·Al₂O₃, Ca₂Al₂SiO₇ и т. д. Последующая диффузия Ca-содержащих жидких фаз, движущихся через поры от шлака к корундовой матрице, еще более усиливает проникновение шлака.

Среди образцов 1#-5# огнеупоры Al₂O₃-ZrO₂-SiC показали хорошую стойкость к коррозии и проникновению шлака. При нагреве тигля из этого материала до 1873 К в течение 2 ч SiC огнеупора не может раствориться в расплавленном шлаке. Это приводит к увеличению его вязкости [17], в результате чего проникновение шлака и коррозия тигля затрудняются. В дальнейшем исследования механизмов коррозии шлаком и проникновения шлака в огнеупоры на основе MgAl₂O₄ и Al₂O₃ будут продолжены.

ЗАКЛЮЧЕНИЕ

Исследованы коррозия шлаком и его проникновение в огнеупоры $MgAl_2O_4$, $MgAl_2O_4$ -ZrO₂, $MgAl_2O_4$ -ZrO₂-CaO, Al_2O_3 и Al_2O_3 -ZrO₂-SiC. Огнеупоры на основе $MgAl_2O_4$ и Al_2O_3 обладают хорошим показателем коррозионной стойкости, глубина коррозии менее 1,10 мм. Самый высокий показатель стойкости к коррозии шлаком оказался у корундового материала. Композит Al_2O_3 -ZrO₂-SiC продемонстрировал хорошие показатели коррозионной стойкости и стойкости к проникновению шлака. Стойкость к проникновению шлака у этого материала самая высокая, она составила всего 13,79 мм.

*

*

Проведению настоящего исследования оказали поддержку: Фонд фундаментальных исследований Центральных университетов (грант

Библиографический список

1. **Zhu**, **B**. **Q**. Effect of ceramic bonding phases on the thermo-mechanical properties of Al_2O_3 -C refractories / *B*. *Q*. *Zhu*, *Y*. *N*. *Zhu*, *X*. *C*. *Li* [et al.] // Ceram. Inter. — 2013. — Vol. 39, Ne 6. — P. 6069–6076.

2. *Wang, Q. H.* Strengthening mechanism of grapheme oxide nanosheets for Al_2O_3 -C refractories / *Q. H. Wang, Y. W. Li, M. Luo* [et al.] // Ceram. Inter. — 2014. — Vol. 40, No 1. — P. 163–172.

3. *Ma*, *B*. *Y*. Synthesis of Al₂O₃–SiC composite and its effect on the properties of low-carbon MgO–C refractories / *B*. *Y*. *Ma*, *Q*. *Zhu*, *Y*. *Sun* [et al.] // J. Mater. Sci. Technol. – 2010. – Vol. 26, № 8. – P. 715–720.

4. *Ganesh, I.* A new sintering aid for magnesium aluminate spinel / *I. Ganesh, S. Bhattacharjee, B. P. Saha* [et al.] // Ceram. Inter. — 2001. — Vol. 27, № 7. — P. 773–779.

5. *Ma*, *B*. *Y*. Preparation and properties of low-carbon Al₂O₃–ZrO₂–SiC–C composite refractories containing LaAl₁₁O₁₈ ceramic phase / *B*. *Y*. *Ma*, *Y*. *Li*, *Q*. *Zhu* [et al.] // Refrac. Ind. Ceram. — 2014. — accepted.

6. **Gómez, I.** Comparative study of microwave and conventional processing of $MgAl_2O_4$ -based materials / *I. Gómez, M. Hernández, J. Aguilar, M. Hinojosa //* Ceram. Inter. -2004. -Vol. 30, N = 6. -P. 893-900.

7. **Zaki**, **Z. I.** High pressure synthesis of magnesium aluminate composites with $MoSi_2$ and Mo_5Si_3 in a self-sustaining manner / *Z. I. Zaki*, *N. Y. Mostafa*, *M. M. Rashad* // Ceram. Inter. — 2012. — Vol. 38, $N \ge 6$. — P. 5231–5237.

8. *Ma*, *B*. *Y*. Preparation and sintering properties of zirconia-mullite-corundum composites using fly ash and zircon / *B*. *Y*. *Ma*, *Y*. *Li*, *S*. *G*. *Cui*, *Y*. *C*. *Zhai* // T. Nonferr. Metal. Soc. - 2010. - Vol. 20, № 12. - P. 2331–2335.

9. **Naghizadeh, R.** Effect of TiO_2 on phase evolution and microstructure of $MgAl_2O_4$ spinel in different atmospheres / *R. Naghizadeh*, *H. R. Rezaie*, *F. Golestani-Fard* // Ceram. Inter. — 2011. — Vol. 37, Ne1. — P. 349–354.

10. **Sahin**, **B.** Developments on the mechanical properties of MgO–MgAl₂O₄ composite refractories by ZrSiO₄-3 mol.% Y₂O₃ addition / *B. Sahin*, *C. Aksel* // J. Eur. Ceram. Soc. -2012. -Vol. 32, № 1. - P. 49–57.

11. **Aksel, C.** Improvements on the thermal shock behaviour of MgO-spinel composite refractories by incorporation of zircon-3 mol% Y_2O_3 / *C. Aksel, T. Aksoy* // Ceram. Inter. - 2012. - Vol. 38, No 5. - P. 3673-3681.

12. *Tripathi, H. S.* Synthesis and densification behaviour of magnesium aluminate spinel: Effect of

№ 120402006), открытый фонд Государственной главной лаборатории по огнеупорам и металлургии (Вуханский университет науки и технологии, грант № G201402), Национальный фонд Китая по естественным наукам (грант № 51474057), Национальная программа по научно-техническим исследованиям Китая (Программа № 863, грант № 2013АА030902).

Dy₂O₃ / H. S. Tripathi, S. Singla, A. Ghosh // Ceram. Inter. – 2009. – Vol. 35, № 6. – P. 2541–2544.

13. *Fernández, B.* Corrosion mechanisms of $Al_2O_3/MgAl_2O_4$ by V_2O_5 , NiO, Fe₂O₃ and vanadium slag / *B. Fernández, J. M. Almanza, J. L. Rodríguez* [et al.] // Ceram. Inter. -2011. -Vol. 37, Ne 8. -P. 2973–2979.

14. **Cho**, **M**. **K**. Corrosion of spinel clinker by CaO– Al₂O₃–SiO₂ ladle slag / *M*. *K*. Cho, G. G. Hong, S. K. Lee // J. Eur. Ceram. Soc. -2002. - Vol. 22, № 11. -P. 1783–1790.

15. **Berjonneau**, **J**. The development of a thermodynamic model for Al_2O_3 -MgO refractory castable corrosion by secondary metallurgy steel ladle slags / *J. Berjonneau*, *P. Prigent*, *J. Poirier* // Ceram. Inter. - 2009. - Vol. 35, No 2. - P. 623-635.

16. *Vázquez, B. A.* Corrosion mechanism of polycrystalline corundum and calcium hexaluminate by calcium silicate slags / *B. A. Vázquez, P. Pena, A. H. de Aza, M. A. Sainz, A. Caballero* // J. Eur. Ceram. Soc. - 2009. - Vol. 29, N 8. - P. 1347–1360.

17. *Ma*, *B*. *Y*. Influences of commercial SiC and Al₂O₃–SiC synthesized from clay on the slag resistance of corundum material / *B*. *Y*. *Ma*, *Q*. *Zhu*, *Y*. *Sun*, *J*. *K*. *Yu*, *Y*. *Li* // Adv. Mater. Res. – 2011. – Vol. 146/147. – P. 526–529.

18. *Chen, Z. Y.* Chemical Thermodynamics of Refractories (in Chin.) / *Z. Y. Chen*; 1st ed. — Beijing : Metallurgical Industry Press, 2005. ■

Получено 19.01.15 © Бейюэ Ма, Юэ Инь, Цян Чжу, Инин Чжай, Ин Ли, Гуанцзян Ли, Цзинкунь Юй, 2015 г. Пер. — **С. Н. Клявлина** (ОАО «Комбинат Магнезит»), 2015 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

НТСМС 9—9-я Международная конференция по высокотемпературным керамическим композитам

26 июня — 1 июля 2016 г., Торонто, Канада

www.ceramics.org