Д. т. н. И. Д. Кащеев, А. Э. Глызина, д. т. н. А. Б. Финкельштейн, А. А. Шеффер, И. Р. Иштуганов, к. т. н. И. А. Павлова (🖂)

> ФГАОУ ВО «Уральский федеральный университет», Екатеринбург, Россия

УДК 666.951:662.998-492]:669.715 НЕФОРМОВАННЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ДИАТОМИТА ДЛЯ АЛЮМИНИЕВЫХ СПЛАВОВ

Приведены результаты исследований диатомитов Ильинского месторождения (Свердловская обл.) для изготовления неформованных теплоизоляционных материалов и их применения в качестве изолирующих материалов в тиглях с алюминиевым расплавом. Использование диатомита в качестве теплоизолирующего материала позволяет сократить расход электроэнергии при выдержке алюминиевого расплава в тигельной печи сопротивления, препятствует появлению водородной пористости и не приводит к насыщению расплава кремнием.

Ключевые слова: диатомит, неформованные теплоизоляционные засыпки, расплав алюминия, защита зеркала металла.

люминиевые сплавы широко применяются Ав современной технике [1] за счет высокой удельной прочности, коррозионной стойкости, а также низкой температуры плавления, которая позволяет использовать для производства из них отливок дешевую технологию литья в металлические формы. Алюминий является легкоокисляемым металлом; на его поверхности моментально образуется плотная и тугоплавкая (2040 °C) оксидная пленка, блокирующая трансфер газов [2]. Благодаря оксидной пленке устраняется насыщение расплава водородом, а растворимость водорода при кристаллизации в алюминиевых расплавах снижается почти в 20 раз, что приводит к формированию водородной пористости. Балл водородной пористости определяется согласно ГОСТ 1583 и часто является сдаточным параметром отливок.

Тем не менее оксидная пленка на зеркале расплава часто нарушается, поэтому для защиты зеркала расплава предусмотрено использование покровных флюсов на основе эвтектики NaCl-KCl [3]. Но расплав солей обладает достаточно высокой теплопроводностью, что приводит к тепловым потерям и является также немаловажным фактором, особенно с учетом частой длительной выдержки расплава в печи. В настоящей работе предлагается использовать в качестве теплоизолирующего покрытия диатомит.

> ⊠ И. А. Павлова E-mail: htko@yandex.ru , i.a.pavlova@urfu.ru

Применение диатомита в качестве сырья для производства теплоизоляционных смесей является выгодным с технико-экономической точки зрения: запасы диатомита огромны и легкодоступны для добычи открытым способом, диатомит является хорошим природным теплоизолятором с нанопористой структурой [4]. Однако диатомит имеет невысокую огнеупорность из-за содержания в нем различных примесей. Путем корректировки состава и технологическими приемами можно добиться использования смесей на основе диатомита в качестве теплоизолирующего материала для утепления и защиты зеркала металла в ковше или других емкостях [5].

Химический состав исследованных материалов определяли методом эмиссионного спектрального анализа с индуктивно-связанной плазмой на оптическом эмиссионном спектрометре Optima 4300 DV (Perkin Elmer, США), состав алюминиевого сплава — на спектроанализаторе Spectro Midex Precious Metals. Фазовый состав диатомита исследовали на дифрактометре с вращающимся анодом MiniFlex 600 (Cu K_{α} -излучение, $\lambda = 1,541862$ Å, интервал съемки 3,00-90,00 град, шаг сканирования 0,02 град) фирмы Rigaku - Carl Zeiss, Япония, с программным управлением и сбором данных MiniFlex Guidance и пакетом обработки данных JSPDS, изменение фазового состава диатомита при нагревании — термогравиметрическим методом на дифференциальном сканирующем дериватографе STA 449 F3 Jupiter (Netzsch Gerätebau GmbH) с использованием программного пакета Proteus Analysis 5.2.

Исследовали диатомит Ильинского месторождения с высоким содержанием кремнезе-

Таблица 1. Химический состав диатомита Ильинского месторождения, мас. %									
Диатомит	SiO_2	Al_2O_3	Fe ₂ O ₃	CaO	MgO	Na ₂ O	K_2O	TiO ₂	$\Delta m_{ m npk}$
Сухой	75,22	9,45	4,00	0,98	1,16	0,32	1,27	0,56	7,01
Прокаленный	80,90	10,20	4,30	1,10	1,25	0,35	1,37	0,60	-

BUSTOWUTS MELUUCKOE	<u>, иосторожношин изс</u>
	и местириадения, мас.
 д	

ма (75,22 мас. %) и примесей различных оксидов (табл. 1). Минеральный состав диатомита

Рис. 1. Результаты рентгенофазового анализа диатомита Ильинского месторождения: а — сырой диатомит; б — диатомит, термообработанный при 1000 °C

представлен кварцем, монтмориллонитом, каолинитом и аморфной фазой, которая представлена опаловой породой (SiO₂·nH₂O) (рис. 1). Дериватограмма диатомита Ильинского месторождения показана на рис. 2, из нее следует, что вещественный состав ильинского диатомита представлен опалом SiO₂·nH₂O (пик при 165,7 °C) — дегидратация с потерей до 100 % влаги минерала; кварцем (пик при 574,6 °C) характерный полиморфный переход β-кварц ≓ ≓ α-кварц: монтмориллонитом в виде нонтронита (Ca,Na)Fe₂⁺[(Si,Al)₄O₁₀](OH)₂·nH₂O: эффект в области 50-200 °C — потеря молекулярной (физически связанной, межслоевой) воды, до 50 % всей влаги минерала; эффект при 532 °С, в области 400-600 °С — потеря конституционной воды из октаэдрических слоев кристаллической решетки без ее разрушения, до 5 % влаги минерала; эффект при 877,6 °С — разрушение кристаллической решетки нонтронита с образованием полуаморфных продуктов типа кристобалита, железистой шпинели, гематита и др., сопровождающееся потерей до 1,5 % массы минерала.

Неформованный зернистый теплоизоляционный материал изготовляли по следующей технологии. Исходный диатомит сушили до постоянной массы при комнатной температуре, затем измельчали до полного прохождения через сито с сеткой № 3 и вновь увлажняли водой до влажности 20 %. Полное удаление влаги из

Рис. 2. Дериватограмма диатомита Ильинского месторождения: 1 — кривая изменения массы (ТГ); 2 — кривая дифференциальной сканирующей калориметрии (ДСК); 3 — кривая dДСК

природного диатомита было необходимо для последующего контроля влияния влаги на технологические операции. Брикеты формовали методом полусухого прессования под давлением 10 МПа. Полученный полуфабрикат сушили первоначально при (22±5) °C в течение 5–6 ч, а затем при (100±5) °C. Высушенные брикеты подвергали повторному дроблению до фракции 3–7 мм, которую обжигали при 1000 °C с выдержкой 1 ч и охлаждали вместе с печью. При этой температуре максимально удаляется вся влага из диатомита (см. рис. 2). Насыпная плотность полученной засыпки составила 0,65 г/см³.

Эффективность применения полученного теплоизоляционного материала оценивали при плавке алюминиевого сплава АК5М2 в кварцевом стакане в муфельной лабораторной печи сопротивления и в чугунном тигле в тигельной печи сопротивления САТ-0,16. Технический алюминий плавили в кварцевом тигле и нагревали в печи сопротивления до 900 °C. В расплав помещали термопару, тигель охлаждали до 150 °С. После полного охлаждения тигель повторно нагревали и на поверхность расплава засыпали диатомитовый теплоизоляционный материал толщиной 25 мм, предварительно разогретый до 150 °C, затем тигель вновь охлаждали. На рис. 3 показаны кривые охлаждения расплава технического алюминия. До температуры плавления алюминия кривые охлаждения 1 и 2 снижаются с одинаковой скоростью. После кристаллизации температура затвердевшего алюминия снижается быстро (кривая 1) и через 10-11 мин составляет примерно 150 °C. В присутствии на поверхности расплава алюминия теплоизоляционного диатомитового материала время кристаллизации увеличивается до 16-17 мин, а температура 200 °С достигается через 41 мин. Таким образом, теплоизоляция поверхности расплава алюминия в кварцевом тигле диатомитовой засыпкой способствует увеличению времени кристаллизации и сохранению температуры алюминия в тигле от 10-11 мин до 40.

Теплопроводность чугунного тигля способствует высокой скорости охлаждения расплава металла (рис. 4). Охлаждение алюминия без засыпки (см. рис. 4, кривая 1) от температуры плавления алюминия до 615 °С происходит примерно за 20 мин. Теплоизоляционная засыпка толщиной 25 мм на поверхности изменяет характер охлаждения расплава (см. рис. 4, кривая 2). Температура 660 °С в течение 10 мин остается постоянной, а затем снижается до 600 °С в течение 56 мин; в дальнейшем она снижается в обоих случаях одинаково.

Поскольку алюминий согласно диаграмме Эллингема [6, 7] при температуре исследования является лучшим окислителем, чем кремний — основная составляющая диатомита, то возможна обменная реакция с насыщением

Рис. 3. Кривые охлаждения расплава алюминия AK5M2 без засыпки (1) и с диатомитовой засыпкой (2)

Рис. 4. Кривые охлаждения расплава алюминия в чугунном тигле без засыпки (1) и с диатомитовой засыпкой (2)

алюминиевого расплава кремнием. Для оценки насыщения алюминиевого сплава кремнием был проведен спектральный анализ до и после плавки (табл. 2) на спектроанализаторе Spectro Midex Precious Metals. Как показал результат анализа, насыщения расплава кремнием не происходит. Это является следствием наличия на границе раздела диатомит - алюминиевый сплав оксидной пленки, образующейся благодаря нанопористой структуре диатомита и препятствующей развитию обменной реакции. Следует отметить даже некоторое снижение насыщения кремнием, что связано с флуктуациями состава сплава при отсутствии конвекции в печи сопротивления. Кроме того, на поверхности шлифов не наблюдалось увеличения водородной пористости. Это указывает на то, что диатомит препятствует трансферу атмосферных паров воды к зеркалу металла.

Таблица	2.	Химический	состав	алюминиевого				
сплава до и после плавки, %								

Сплав	Si	Mg	Cu	Zn	Fe
Исходный	6,57	0,56	1,74	1,65	0,93
После	5,33	0,58	1,29	1,33	0,67
плавки					

Таким образом, использование диатомитовой смеси позволяет сократить расход электроэнергии при выдержке алюминиевого расплава в тигельной печи сопротивления и не приводит к появлению водородной пористости и насыщению расплава кремнием.

Библиографический список

1. Алюминиевые сплавы (свойства, обработка, применение) : справочник ; под ред. Х. Нильсен, В. Хуфнагель, Г. Ганулис. — М. : Металлургия, 1979. — 672 с.

2. Aluminum: properties and physical metallurgy ; ed. by J. E. Hatch. American Society for metals. Metals Park, Ohio, 1984. — 449 p.

3. **Альтман, М. Б.** Неметаллические включения в алюминиевых сплавах / *М. Б. Альтман.* — М. : Металлургия, 1965. — 125 с.

4. *Архангельский, А. Л.* Горные породы Свердловской области / *А. Л. Архангельский.* — Свердловск : изд. УПИ, 1966. — 296 с.

5. **Кривенко, А. П.** Опыт применения универсальных теплоизолирующих смесей для промежуточного ковша / А. П. Кривенко, А. Н. Легченков, Ю. В. Климов [и др.] // Сталь. — 2007. — № 11. — С. 13–16.

6. Неорганическая химия. В 3 т. Т. 1 ; под ред. Ю. Д. Третьякова. — М. : Академия, 2004. — 240 с.

7. *Ellingham, H. J. T.* Reducibility of oxides and sulfides in metallurgical processes / *H. J. T. Ellingham* // J. Soc. Chem. Ind. — 1944. — Vol. 63. — C. 125–133. ■

Получено 03.04.19 © И. Д. Кащеев, А. Э. Глызина, А. Б. Финкельштейн, А. А. Шеффер, И. Р. Иштуганов, И. А. Павлова, 2019 г.

46