НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

К. т. н. **Ю. И. Комоликов**¹, д. т. н. **И. Д. Кащеев**², к. т. н. **К. Г. Земляной**² (⊠), **В. И. Пудов**¹

¹ ФГБУН «Институт физики металлов имени М. Н. Михеева УрО РАН», Екатеринбург, Россия

² ФГАОУ ВО «Уральский федеральный университет», Екатеринбург, Россия

УДК 666.3:546.623-31].017

СВОЙСТВА КЕРАМИКИ НА ОСНОВЕ АІ₂O₃ С ДОБАВКОЙ УЛЬТРАДИСПЕРСНОГО ПОРОШКА АІ₂O₃, СИНТЕЗИРОВАННОГО ЭЛЕКТРОХИМИЧЕСКИМ СПОСОБОМ

Приведены результаты исследований закономерности спекания и свойств корундовой керамики на основе глинозема с добавкой ультрадисперсного порошка (УДП) Al₂O₃, синтезированного электрохимическим способом. Показано, что с повышением температуры обжига и концентрации УДП Al₂O₃ наблюдается закономерный рост линейной усадки, микротвердости и предела прочности при изгибе керамики (максимальные значения при 1550 °C 27,8 %, 17 ГПа и 340 МПа соответственно). Введение УДП Al₂O₃ позволяет уже при 1550 °C достичь кажущейся плотности керамики 3,87 г/см³.

Ключевые слова: ультрадисперсные порошки (УДП), электрохимический синтез, оксид алюминия, керамика, кажущаяся плотность, микротвердость.

введение

ерамика на основе оксида алюминия в настоящее время является распространенным конструкционным и функциональным материалом, поскольку обладает хорошим сочетанием свойств: доступностью и относительно невысокой стоимостью, высокими прочностью, термостойкостью, износостойкостью, температурой эксплуатации и химической стойкостью [1-4]. Одним из основных технико-экономических факторов, обусловливающих стоимость корундовой керамики, остается высокая температура обжига изделий (1650-1800 °C), необходимая для достижения оптимальной степени спекания. Для снижения температуры спекания корундовой керамики используют два принципиально разных способа [4], один из которых включает комплекс мер по активированию основного материала, а второй связан с введением модифицирующих добавок. Добавки классифицируют по числу компонентов (одно- и многокомпонентные), по механизму спекания (жидко- и твердофазный), по количеству введения (микро- и макродобавки) и т. д. [5]. Основным недостатком второго способа является появление в изделии второй фазы, меняющей физико-химический состав и термомеханические свойства изделий. Для снижения температуры спекания корундовой керамики однородного химического состава используют ультрадисперс-

> ⊠ К. Г. Земляной E-mail: kir77766617@mail.ru

ные порошки (УДП) Al₂O₃, причем УДП могут применяться как в качестве добавки, так и в качестве основного сырья [6, 7]. Из большого разнообразия способов получения УДП наиболее хорошо изученным является метод получения чистых и сверхчистых УДП α-Al₂O₃ прокаливанием гидроксидов, синтезированных осаждением из растворов солей [7, 8]. Способ получения УДП, основанный на процессах анодного растворения металлов в электрохимическом реакторе, изучен мало и является перспективным, так как позволяет четко регулировать параметры электрохимического процесса, получать УДП с узким диапазоном размеров, управлять их морфологией и фазовым составом [9]. Свойства порошков Al₂O₃, полученных из электрохимически синтезированных гидроксидов, изучены недостаточно.

Цель настоящей работы — изучение свойств порошков и условий спекания корундовой керамики в зависимости от введения в ее состав УДП Al₂O₃, полученных электрохимическим способом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для проведения исследований было приготовлено 9 макрооднородных смесей основного компонента с разным содержанием УДП Al₂O₃. В качестве основного компонента использовали оксид алюминия, полученный из глинозема Г-00 производства Богословского горно-обогатительного комбината, прокаливанием при 1450 °C в течение 2 ч. УДП Al₂O₃ получали прокаливанием электрохимически синтезированного гидроксида алюминия. Электрохимический синтез гидроксида

28

осуществляли в коаксиальном электролизере с источником постоянного тока. Катод электролизера был изготовлен из стали X18H10T, анод – из алюминиевой фольги (содержание алюминия ≥ 99,5 %). В качестве электролита использовали водный раствор хлорида аммония концентрации 15 мас %. Растворение алюминия проводили при анодной плотности тока 160 А/м². Длительность электролиза 1,5 ч. По окончании процесса полученный гидроксид алюминия отмывали, фильтровали, сушили и прокаливали при 800. 1000 и 1300 °C. Рентгенофазовый анализ (РФА) проводили на дифрактометре DMAX-2500. Rigaku (Япония), в Си К_а-излучении в интервале углов 20 ≤ 20° ≤ 90. Удельную поверхность полученных порошков Al₂O₃ измеряли методом БЭТ (сорбция-десорбция азота) на приборе TriStar 3000 V6.03A. Структурно-морфологические характеристики порошков исследовали на сканирующем электронном микроскопе JEOL JSM 6390 LA. Свойства порошков приведены в табл. 1.

исследования физико-механических Для свойств керамики в зависимости от состава порошков и температуры спекания были изготовлены смеси основного компонента с добавкой УДП Al₂O₃ в количестве 2,5, 5 и 10 мас. %, полученного при 800, 1000 и 1300 °C. Основной компонент с каждой добавкой измельчали мокрым способом в корундовой шаровой мельнице с шарами из ZrO₂ при соотношении М:Ш = 1:3 в течение 24 ч. В полученную суспензию вводили технологическую связку (раствор поливинилового спирта). Пресс-порошок получали с помощью распылительной сушки. Образцы для исследования в виде балочек размерами 50×6×6 мм (в необожженном состоянии) прессова-

Таблица 1. Св	войства исходных	с порошков
----------------------	------------------	------------

		-		
Показатели	УДП Al ₂ O ₃			Глинозем Г-00
Температура прокал-	800	1100	1300	1450
ки, °С				
Удельная поверхность,	170	92	44	0,5
M ² /Γ				
Размер агрегатов, мкм	2-5	3-10	1 - 5	10-50
Содержание α-Al₂O₃,	-	15	100	99,6
мас. %				

ли на лабораторном одноосном гидравлическом прессе под давлением 120 МПа. Полученные образцы спекали в лабораторной электропечи при 1250, 1350, 1450 и 1550 °С в атмосфере воздуха при скорости нагревания 5 °С/мин и выдержке при максимальной температуре в течение 1 ч. На полученных образцах определяли микротвердость на установке Nanotest 600 с использованием алмазной пирамиды Виккерса; плотность методом гидростатического взвешивания в спирте на весах Shumadzu AUW-220 D, оснащенных для этих целей специальной приставкой: предел прочности при изгибе на установке Instron-1185: фазовый состав методом рентгеноструктурного анализа на дифрактометре DMAX-2500, RIGAKU (Япония) в Си К_аизлучении в интервале углов $20 \le 2\theta^{\circ} \le 90$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты определения показателей плотности и усадки образцов, обожженных при разных температурах, представлены в табл. 2.

Плотность образцов линейно изменяется от 2.5 до 3.87 г/см³ и зависит от вида и количества вводимых УДП Al₂O₃ и температуры обжига. Активирующее влияние добавки на уплотнение объясняется увеличением площади межчастичных контактов, которое возрастает с добавкой УДП Al₂O₃. Механизм активирования спекания обусловлен повышенной поверхностной активностью УПП Al₂O₃, которая определяется дефектностью кристаллического строения, размером и формой частиц. Максимальное значение плотности составляет 3,87 г/см³ при 1550 °С и 10 % УДП Al₂O₃, прокаленного при 1000 °С. Имеется незначительное снижение плотности с увеличением содержания УДП Al₂O₃, прокаленных при 800 °C, в образцах, обожженных при 1250 °C. Это уменьшение можно объяснить тем, что УДП Al₂O₃, полученные при 800 °С, представлены ү-фазой Al₂O₃ и с увеличением количества добавки возрастает разрыхляющий эффект перехода γ -Al₂O₃ $\rightarrow \alpha$ -Al₂O₃, происходящий в образцах при обжиге. Усадка образцов с повышением содержания УДП Al₂O₃ и температуры возрастает. Заметная усадка появляется уже при температуре спекания 1250 °С и достига-

Таблица 2. Плотность и усадка образцов, спеченных при разнь	х температурах
--	----------------

	Массовая доля добавки УДП Al ₂ O ₃ , %, прокаленного при									
Показатели	800 °C				1000 °C			1300 °C		
	2,5	5	10	2,5	5	10	2,5	5	10	
При температуре обжига образцов 1250 °С										
Кажущаяся плотность, г/см ³	2,60	2,55	2,51	2,64	2,73	2,91	2,70	2,84	2,94	
Усадка, %	6,0	5,8	5,8	6,0	6,1	7,0	6,1	6,5	7,3	
При температуре обжига образцов 1350 °C										
Кажущаяся плотность, г/см ³	3,29	3,30	3,37	3,26	3,39	3,47	3,36	3,42	3,62	
Усадка, %	11,2	10,8	11,3	11,6	11,3	11,4	12,0	11,2	11,8	
При температуре обжига образцов 1450 °С										
Кажущаяся плотность, г/см ³	3,41	3,52	3,65	3,44	3,57	3,64	3,45	3,62	3,68	
Усадка, %	14,4	16,2	17,6	15,1	17,2	18,8	14,9	17,1	19,0	
При температуре обжига образцов 1550 °C										
Кажущаяся плотность, г/см ³	3,63	3,78	3,85	3,66	3,77	3,87	3,65	3,81	3,83	
Усадка, %	17,9	21,3	27,8	19,2	23,1	27,5	18,6	24,0	27,4	

Tuonnilu 5. Aupurtephetuku oopusilob noene oomutu npu 1950 e										
Показатели		Термообработанная массовая доля добавки УДП Al ₂ O ₃								
		при 800 °C		1	при 1000 °C	2	I	три 1300 °C	2	
Массовая доля добавки, %	2,5	5	10	2,5	5	10	2,5	5	10	
Микротвердость	13,8	15,2	16,8	14,1	16,2	17,0	14,5	16,3	16,9	
по Виккерсу, ГПа										
Предел прочности	170	230	325	210	235	340	205	260	315	
при изгибе, МПа										

Таблица 3. Характеристика образцов после обжига при 1550 °C

ет 7 %. Наблюдается почти линейная зависимость усадки от содержания УДП Al_2O_3 ; при этом угол наклона линии возрастает с повышением температуры спекания. В смесях с концентрацией УДП Al_2O_3 10 % наблюдается наибольшая усадка (27,8 %) образцов, обожженных при 1550 °C, с добавкой 10 % УДП Al_2O_3 , прокаленного при 800 °C. Согласно данным рентгеноструктурного анализа, структура обожженных образцов представлена преимущественно α - Al_2O_3 . С повышением концентрации УДП Al_2O_3 и температуры спекания на рентгенограммах наблюдается уменьшение уровня фона, что свидетельствует об активизации процессов твердофазного спекания и уменьшения количества остаточной аморфной составляющей [3].

В табл. 3 приведены зависимости микротвердости и предела прочности при изгибе от концентрации УДП α-Al₂O₃ образцов, обожженных при 1550 °C. Следует отметить, что микротвердость и прочность увеличиваются с ростом концентрации УДП. Максимальные значения микротвердости (17 ГПа) и предела прочности при изгибе (340 МПа) достигаются при содержании УДП 10 % и температуре обжига 1550 °C.

Библиографический список

1. *Полубояринов, Д. Н.* Керамика из высокоогнеупорных окислов / *Д. Н. Полубояринов.* — М. : Металлургия, 1977. — 304 с.

2. **Павлушкин, Н. М.** Спеченный корунд / Н. М. Павлушкин. — М. : Стройиздат, 1961. — 210 с.

3. **Балкевич, В. Л.** Техническая керамика / В. Л. Балкевич. — М. : Стройиздат, 1984. — 256 с.

4. *Смирнов, В. В.* Корундовая керамика с низкой температурой спекания / *В. В. Смирнов, И. В. Синица //* Огнеупоры. — 1994. — № 10. — С. 7–9.

Smirnov, V. V. Corundum ceramics with a low sintering temperature / *V. V. Smirnov, I. V. Sinitsa* // Refractories. — 1994. — Vol. 35, № 10. — P. 322–324.

5. *Лукин, Е. С.* Современная высокоплотная оксидная керамика с регулируемой микроструктурой. Ч. І. Влияние агрегации порошков оксидов на спекание и микроструктуру керамики / *Е. С. Лукин* // Огнеупоры и техническая керамика. — 1996. — № 1. — С. 5–14.

Lukin, E. S. Modern high-density oxide ceramics with controlled microstructure. Part I. Effect of aggregation of oxide powders on the sintering and microstructure of ceramics / *E. S. Lukin* // Refract. Ind. Ceram. — 1996. — Vol. 37, № 1. — Р. 6–14. 6. **Лукин, Е. С.** Современная высокоплотная оксидная керамика с регулируемой микроструктурой. Ч. II. Обоснование принципов выбора добавок, влияющих на степень спекания оксидной керамики / *Е. С. Лукин* // Огнеупоры и техническая керамика. — 1996. — № 4. — С. 2–13.

ЗАКЛЮЧЕНИЕ

1. Показано, что добавка УДП Al_2O_3 до 10 мас. % в крупнодисперсный порошок Al_2O_3 марки Г-00 активирует спекание корундовой керамики: повышаются ее плотность, микротвердость и прочность.

2. Добавки УДП Al₂O₃ способствуют формированию нанокристаллических включений с термически устойчивой высокодисперсной структурой, а также активизации процессов твердофазного спекания. В результате снижается температура спекания и улучшаются до 20 % прочностные характеристики в сравнении с материалами, полученными по традиционной технологии при более высоких температурах.

3. Установлено, что прочностные характеристики керамики с добавками УДП Al₂O₃, полученных из электрохимически синтезированного гидроксида алюминия, позволяют получать керамику с высокими характеристиками при температуре спекания 1550 °C.

4. Эффективность добавки существенно зависит от содержания УДП Al₂O₃.

Работа выполнена в рамках госзаказа по теме «Диагностика» № АААА-А18-118020690196-3.

Lukin, E. S. Modern high-density oxide ceramics with controlled microstructure. Part II. Substantiation of the choice of modifying additives that affect the degree of sintering of oxide ceramics / *E. S. Lukin* // Refract. Ind. Ceram. — 1996. — Vol. 37, Ne 4. — P. 109–119.

7. Лукин, Е. С. Новые виды корундовой керамики с добавками эвтектических составов / Е. С. Лукин, Н.А. Макаров, Н.А. Попова [и др.] // Конструкционные материалы. — 2001. — № 3. — С. 5–10.

8. *Hsu, Y. F.* Effects of additives on the densification and microstructural evolution of fine Al₂O₃ powder / *Y. F. Hsu, S. F. Wang, T. W. Cheng //* Mater. Sci. Eng. – 2003. – Vol. 362. – P. 300–308.

9. **Sathiyakuman, M.** Influence of additives on density, microstructure and mechanical properties of alumina / M. Sathiyakuman, F. B. Gnanam // J. Mater. Proces. Technol. — 2003. — Vol. 133. — P. 282–286.

10. **Верещагин, В. И.** Функциональная керамика / В. И. Верещагин, П. М. Плетнев, А. П. Суржиков, В. Е. Федоров. — Новосибирск : Наука, 2004. — 348 с.

11. Лотов, В. А. Кинетика спекания корундовой керамики с микродобавками / В. А. Лотов, А. Т. Добролюбов // Стекло и керамика. — 1997. — № 11. — С. 10–12.

12. **Zeng, Wenming.** Sintering kinetics of Al₂O₃ powder / Wenming Zeng, Lian Gao, Linhua Gui, Jinkun Guo // Ceram. Int. — 1999. — Vol. 25. — P. 723–726. ■

Получено 27.05.19 © Ю. И. Комоликов, И. Д. Кащеев, К. Г. Земляной, В. И. Пудов, 2019 г.