К. ф.-м. н. **А. К. Кайракбаев**¹ (⊠), д. т. н. **В. З. Абдрахимов**², к. т. н. **Е. С. Абдрахимова**³

- ¹ ТОО «Технопарк Zerek» учреждения «Актюбинский университет имени С. Баишева», г. Актобе, Республика Казахстан
- ² ФГБОУ ВО «Самарский государственный экономический университет», г. Самара, Россия
- ³ ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С. П. Королёва», г. Самара, Россия

УДК 628.4.038:666.76.001.8

ИСПОЛЬЗОВАНИЕ МАГНИЙ-ХРОМИТОВЫХ ШЛАМОВ ЗАПАДНОГО КАЗАХСТАНА В ПРОИЗВОДСТВЕ ОГНЕУПОРОВ НА ОСНОВЕ ФОСФАТНЫХ СВЯЗУЮЩИХ

Установлено, что наибольшая долговечность огнеупорных композитов может быть достигнута за счет применения химических связующих, которые позволяют использовать в композитах до 90 % отходов. Для получения огнеупорных композитов использованы магний-хромитовые шламы Западного Казахстана — отходы производства Донского ГОКа. В процессе обжига шламовые хвосты обогащаются огнеупорными оксидами, которые связываются в шпинели MgO·Cr₂O₃, MgO·Al₂O₃, MgO·Fe₂O₃ огнеупорностью выше 2000 °C. Полученные из магний-хромитовых шламов огнеупорные композиты на основе фосфатных связующих имеют высокие физико-механические и химические показатели.

Ключевые слова: отходы производства, огнеупорные композиты, магний-хромитовые шламы, фосфатные связующие.

ВВЕДЕНИЕ

дним из создателей неблагополучной экологической ситуации в Казахстане является черной металлургия. На долю предприятий черной металлургии приходится 15-20 % общих загрязнений атмосферы, что составляет более 10,3 млн т вредных веществ в год, а в районах расположения крупных металлургических комбинатов — до 50 % [1-4]. За счет вовлечения промышленных отходов во вторичный оборот в качестве вторичных материальных или энергетических ресурсов [5-7] можно кардинально изменить параметры сырьевой базы не только в России, но и в Казахстане. Использование техногенного сырья в производстве огнеупорных материалов (композитов) способствует также снижению экологической напряженности в ре-

Как показали исследования [8, 9], наибольшая долговечность огнеупорных композитов может быть достигнута за счет применения химических связующих, которые позволяют

 \bowtie

A. K. Кайракбаев E-mail: kairak@mail.ru использовать в композитах до 90 % отходов. Обычно огнеупорные материалы на основе фосфатных связующих называют огнеупорными композитами. Фосфатные связующие, применяемые в огнеупорных композитах, дают возможность широко использовать многие неорганические отходы промышленности. При формировании прочного камня в огнеупорных композитах происходит силикатное связывание неорганических отходов в устойчивые высокотемпературные соединения. Пропитка огнеупорных заполнителей химическими связующими упрочняет их, а в некоторых случаях и повышает их огнеупорность. В настоящее время в России и за рубежом проведено множество исследований, направленных на совершенствование технологии получения огнеупорных композитов на основе фосфатных связующих, улучшение эксплуатационных свойств композитов, а также расширение сырьевой базы.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Авторы настоящей статьи для получения огнеупорных композитов использовали магний-хромитовые шламовые хвосты обогащения, которые являются отходами производства Донского горно-обогатительного комбината — филиала АО «ТНК Казхром». Поскольку в твердой

№ 6 2019 **Hobbie Otheyhopbi** ISSN 1683-4518 **17**

Таблица 1. Характеристика отходов производства

Хвосты		Огнеупорность,						
обогащения	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	Cr_2O_3	$\Delta m_{ m npk}$	°C
Шламовые	12,19	5,20	10,30	2,03	34,38	27,50	8,40	1600-1620
Обожженные	13,60	5,68	11,43	2,10	37,17	30,02	_	1720-1750
шламовые								

фазе шпинелиды из оксидов образуются с довольно большой скоростью при температурах выше 600 °C, шламовые хвосты обогащения предварительно обжигали при 1000 °C. Химический состав обожженных шламовых хвостов обогащения приведен в табл. 1. В процессе обжига шламовые хвосты обогашаются оксидами высокой огнеупорности: MgO (2800 °C), CaO (2614 °C), Cr₂O₃ (2299 °C), Al₂O₃ (2050 °C), SiO₂ (1730 °C), ZrO₂ (2700 °C); в результате образуются шпинели MgO·Cr₂O₃, MgO·Al₂O₃, MgO·Fe₂O₃ [10, 11]. Оксид железа не является огнеупорным (1565 °C), но при взаимодействии с оксидом хрома образует FeCr₂O₄, температура плавления которого составляет 2180 °C; примеси, содержащиеся в хромитовых рудах, снижают температуру плавления. Чистый хромит при нагреве до 1700 °C не претерпевает никаких изменений [10. 111. Высокой коррозионной стойкостью к агрессивным средам выше 1000 °C обладают твердые растворы типа $Mg(Al, Cr)_2O_4$ [10, 11]. Поэтому применение обожженных шламовых хвостов обогащения значительно повышает огнеупорность композиций.

При изготовлении огнеупорных композитов следует использовать фосфатные вяжущие, обладающие высокими прочностью после твердения, термостойкостью, а также огнеупорностью (например, у алюмофосфатных она составляет 1750 °С, у хромофосфатных 2100 °С). В качестве связующего авторы настоящей статьи использовали ортофосфорную кислоту H_3PO_4 в чистом виде по ГОСТ 6552. Массовая доля ортофосфорной кислоты не менее 85 %, плотность не менее 1,69 г/см³.

ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС

Технологический процесс получения огнеупорных композитов, изделий и конструкций из них на основе фосфатной связки включает приготовление формовочной массы, формование изделий и термообработку. Следует отметить, что для затвердевания и набора марочной прочности огнеупорные композиты требуют особого режима термообработки [9, 10, 12]. Для композитов на ортофосфорной кислоте с компонентами, приведенными в табл. 2, необходимы нагрев (во избежание трещин) с подъемом температуры до 200 °С со скоростью 60 °С/ч и до 2500 °С со скоростью 150 °С/ч, выдержка в течение 4 ч, охлаждение вместе с печью. В табл. 3 приведены показатели огнеупорного бетона. Как видно, ог-

Таблица 2. Состав огнеупорного композита

Компонент	Содержание компонента, мас. %, в составе				
	1	2	3		
Обожженные шламовые	85	87	90		
хвосты обогащения					
Ортофосфорная кислота	15	13	10		

Таблица 3. Физико-механические показатели огнеупорного бетона составов 1-3 (см. табл. 2) после твердения и нагрева до 1200 °C

Показатели	1	2	3
Термостойкость, тепло-	7	9	12
смены			
Предел прочности при	60,4	62,8	65,0
сжатии, МПа			
Кислотостойкость, %	97,2	97,8	98,0
Огнеупорность, °C	1690	1720	1750
Температура деформации	1570	1610	1640
под нагрузкой 0,2 МПа, °C			

неупорные композиты предложенных составов имеют высокие технологические показатели.

ЗАКЛЮЧЕНИЕ

Установлено, что наибольшая долговечность огнеупорных композитов может быть достигнута за счет применения химических связующих, которые позволяют использовать в композитах до 90 % отходов. Предлагаемые составы огнеупорных композитов на основе магний-хромитовых шламов и фосфатных связующих имеют высокие физико-механические и химические показатели.

Огнеупорные изделия на базе синтезированных фосфатных связок можно применять практически в любых элементах футеровки в виде торкрет-масс, штучных блоков, обмазок, связующих [12]. Рабочая температура таких огнеупоров в зависимости от состава исходных компонентов варьируется от 1600 до 1700 °C.

* * *

Работа выполнена в рамках реализации научнотехнического проекта, одобренного к грантовому финансированию на 2018–2020 годы Национальным научным советом Республики Казахстан по направлению науки «Рациональное использование природных ресурсов, в том числе водных ресурсов, геология, переработка, новые материалы и технологии, безопасные изделия и конструкции», договор на грантовое финансирование № 177 от 15 марта 2018 г.

Библиографический список

- 1. Абдрахимов, В. 3. Снижение экологического ущерба экосистемам за счет использования отходов горючих сланцев в производстве теплоизоляционных материалов / В. 3. Абдрахимов, Е. С. Абдрахимова // Экология промышленного производства. 2016. № 3. С. 18-24.
- 2. *Имангазин, М. К.* Инновационные направления использования отходов черной металлургии в производстве керамического кирпича / М. К. Имангазин, Е. С. Абдрахимова, В. З. Абдрахимов, А. К. Кайракбаев // Металлург. 2017. № 2. С. 22–25.
- 3. Абдрахимов, В. 3. Использование электросталеплавильного шлака в производстве керамического кирпича и жаростойких бетонов / В. 3. Абдрахимов, Е. С. Абдрахимова // Экология промышленного производства. 2016. № 2. С. 2–7.
- 4. Абдрахимов, В. 3. Перспективное направление для «зеленой» экономики использование шлака от производства ферросилиция и глинистой части «хвостов» гравитации в получении керамических материалов / В. 3. Абдрахимов, А. К. Кайракбаев, Е. С. Абдрахимов // Экологические системы и приборы. 2015. № 12. С. 30—34
- 5. Абдрахимов, В. 3. Снижение экологического ущерба экосистемам за счет использования отходов горючих сланцев в производстве легковесного кирпича и пористого заполнителя / В. 3. Абдрахимов, Е. С. Абдрахимова // Экологическая химия. 2017. Т. 26, \mathbb{N} 4. С. 190–197.
- 6. Абдрахимова, Е. С. Инновационные направления по использованию отходов углеобогащения и межсланцевой глины в производстве теплоизоляционных материалов / Е. С. Абдрахимова, В. З. Абдрахимов // Энергосбережение и водоподготовка. 2017. № 2. С. 54–58.

- 7. **Абдрахимов, В. 3.** Снижение нанесения экологического ущерба биосфере в целом за счет использования отходов энергетики и цветной металлургии в производстве керамического кирпича / В. 3. Абдрахимов, С. Н. Пичкуров, Е. С. Абдрахимова, И. Д. Абдрахимова // Экология промышленного производства. 2017. № 1. С. 3-6.
- 8. **Абдрахимова**, **Е. С.** Использование отходов цветной металлургии в производстве жаростойких бетонов на основе фосфатных связующих / Е. С. Абдрахимова, В. З. Абдрахимов // Экология и промышленность России. 2016. Т. 20, № 2. С. 32–38.
- 9. **Абдрахимов, В. 3.** Композиция для изготовления жаростойких бетонов на основе железосодержащего шлака ТЭЦ и ортофосфорной кислоты / В. 3. Абдрахимов, А. К. Кайракбаев, Е. С. Абдрахимова // Экология и промышленность России. 2015. Т. 19, № 9. С. 26–29.
- 10. **Будников, П. П.** Химическая технология керамики и огнеупоров / П. П. Будников, В. Л. Балкевич, А. С. Бережной [и др.]. М. : Изд-во лит-ры по стр-ву, 1972. 554 с.
- 11. **Куколев, Г. В.** Химия кремния и физическая химия силикатов / Г. В. Куколев. М. : Высшая школа, 1966.-463 с.
- 12. **Хлыстов, А. И.** Повышение эффективности жаростойких композитов за счет применения химических связующих / А. И. Хлыстов, С. В. Соколова, А. В. Власов // Строительные материалы, оборудование, технологии XXI века. 2012. № 9. С. 38–42. ■

Получено 22.05.18 © А.К.Кайракбаев, В.З.Абдрахимов, Е.С.Абдрахимова, 2019 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

№ 6 2019 **HOBbie Ofheyhopbi** ISSN 1683-4518 **19**