Кхин Маунг Сое (🖾), к. т. н. Н. А. Попова, д. т. н. Е. С. Лукин

ФГБОУ ВО «Российский химико-технологический университет имени Д. И. Менделеева», Москва, Россия

УДК 666.3:546.26.001.5

КОМПОЗИЦИОННАЯ КЕРАМИКА НА ОСНОВЕ КАРБИДА КРЕМНИЯ

Эффективным методом получения плотной зернистой керамики из SiC с остаточной пористостью менее 5,0 % является применение добавок эвтектических составов оксидных систем. Рассмотрено влияние дисперсного порошка эвтектики в системе Al₂O₃-MnO-SiO₂ в зависимости от состава шихты, давления прессования и температуры обжига на показатели спекания зернистой керамики из SiC. Установлено, что после обжига при 1250 °C такой керамики с 15 мас. % добавки эвтектики ее пористость составляет 4,2 %, а предел прочности при изгибе достигает (95±5) МПа.

Ключевые слова: карбид кремния, эвтектическая добавка, конструкционная керамика.

Керамика из SiC широко применяется в различных областях техники благодаря своим физико-механическим свойствам. Карбид кремния отличается высокой твердостью, низкой плотностью, из него изготавливают фильтры, торцевые уплотнения, теплообменники, детали авиакосмической техники, элементы броневой зашиты [1, 2]. Нагреватели из SiC широко применяют в печах с рабочей температурой до 1500 °C. Одним из перспективных направлений может быть использование керамических ножниц из SiC для дозирования капель расплава стекла при центробежном формовании стеклотары.

Керамические изделия из SiC в связи с особенностями кристаллического строения изготавливают по различным технологиям. Изделия из рекристаллизованного SiC получают из дисперсного SiC высокой чистоты при обжиге при 2200 °С и используют в основном для долговечной оснастки при обжиге фарфоровых изделий. Плотные изделия из самосвязанного SiC получают реакционным спеканием композиции SiC + C при обжиге с пропиткой заготовок расплавом или в парах кремния. Изделия из SiC изготавливают с применением обычного спекания без приложения давления и горячего прессования. В этом случае используют добавки нанопорошков оксида алюминия, алюмомагнезиальной шпинели или иттрий-алюминиевого граната [3, 4]. Эти добавки, вводимые в порошок SiC субмикронного размера в количестве до 10 мас. %, обеспечивают получение плотной керамики, кото-

> ⊠ Кхин Маунг Сое E-mail: khinmgsoe53@gmail.com

рая практически не окисляется до 1900 К в присутствии кислорода [5, 6].

В последние годы для получения изделий из зернистого SiC используют субмикронные порошки эвтектических составов оксидных систем. Совместное использование зернистого порошка SiC и оксидных эвтектических добавок позволяет создавать керамические материалы с улучшенными физико-техническими характеристиками. Ультрадисперсные закристаллизованные фазы эвтектики обеспечивают снижение температуры спекания, что придает материалу необходимые прочность и трещиностойкость. В настоящей работе композиционную керамику из зернистого SiC получали жидкофазным реактивным спеканием на воздухе. Подробно исследовано влияние концентрации эвтектической добавки в системе Al₂O₃-MnO-SiO₂ на фазовый состав, микроструктуру и механическую прочность керамики.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Композиционную керамику из зернистого SiC, дисперсионно упрочненную субмикронными частицами эвтектики в системе Al_2O_3 -MnO-SiO₂ в количестве от 5 до 15 мас. %, получали обжигом на воздухе при 1200 и 1250 °C. В качестве исходных компонентов использовали промышленный порошок α -SiC марки F-120 Волжского абразивного завода (табл. 1). Порошок добавки эвтектического состава Al_2O_3 -MnO-SiO₂ получали термолизом гомогенной шихты с учетом потерь при прокаливании гидроксида алюминия, углекислого марганца и аморфного SiO₂ марки БС-120 при 1000 °C. Компоненты композиции зернистый карбид кремния – субмикронный порошок эвтектики смешивали в этаноле на валковой мельнице

•	Таблица	a 1.	Исхо	цный	соста	в про	омышленного	ПО
	рошка	кар	обида	крем	ниям	арки	F-120	

Химичеси	хий состав	РФА-количественный состав			
компонент	содержание компонента, мас. %	компонент	содержание компонента, мас. %		
SiC Fe ₂ O ₃	$\ge 99,649 \\ \le 0,176$	6H-SiC 12R-SiC	≥ 89,92 ≤ 7,57		

с применением барабанов и шаров из корунда в течение 2 ч с добавкой 5 %-ного водного раствора поливинилового спирта в качестве временного технологического связующего. Полученную суспензию сушили при 70 °С в течение 4 ч в сушильном шкафу и пропускали через сито 300 меш с размером ячейки около 140 мкм. Затем из полученного порошка одноосным прессованием под давлением 100, 200 и 250 МПа формовали штабики размерами 40×6×5 мм. Полученные заготовки обжигали в интервале 1200–1250 °С на воздухе с выдержкой 3 ч в печи с хромитлантановыми нагревателями. Скорость нагрева 4 °С/мин, охлаждения 5 °С/мин.

Микроструктуру исходных порошков и шихты исследовали с помощью сканирующей электронной микроскопии (СЭМ, модель VEGA 3, Tescan, Словения), фазовый состав прокаленного порошка эвтектики определяли с применением рентгенофазового анализа (РФА) на приборе модели D/max2200, Rigaku, Япония, кажущуюся плотность спеченных образцов — методом гидростатического взвешивания, предел прочности при изгибе образцов — методом трехточечного изгиба на разрывной машине Instron 5581.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 показана микроструктура исходных порошков и шихты после смешения в валковой мельнице. Порошок SiC слагается крупными кристаллами осколочной формы, средний размер которых составляет 100 мкм (см. рис. 1, а). Частицы порошка эвтектической добавки мелкие и агломерированные, формируют вторичные агрегаты размерами порядка 2 мкм (см. рис. 1, б). При смешении в валковой мельнице происходит разрушение крупных агрегатов добавки на более мелкие фрагменты и отдельные частицы (см. рис. 1, в); среди осколочных кристаллов α-SiC наблюдаются мелкие кристаллы эвтектической добавки, равномерно распределенные по зернам SiC. Средняя плотность сформованных штабиков, определенная по их геометрическим размерам и массе на образцах из SiC + X мас. % добавки Al₂O₃-MnO-SiO₂ (см.

Рис. 1. СЭМ-фотографии микроструктуры порошков α-SiC (*a*), добавки эвтектического состава Al₂O₃-MnO-SiO₂ (*б*) и шихты (*в*) после смешения в шаровой мельнице

Таблица 2.	Свойства	образцов	композитов	с эвтектической	добавкой	в системе	Al ₂ O ₃ -MnO-	-SiO₂ при
различных	к температ	урах спек	ания					

Состав	Давление прессования, МПа	Плотность, г/см ³	Пористость, %	Предел прочности при изгибе, МПа				
Температура обжига 1200 °С								
SiC + 5 мас. % добавки Al ₂ O ₃ -	200	2,51	14,0	38±5				
MnO-SiO ₂	250	2,67	9,0	54±5				
SiC + 10 мас. % добавки Al ₂ O ₃ -	200	2,65	10,4	52±5				
MnO–SiO ₂	250	2,77	8,2	67±5				
SiC + 15 мас. % добавки Al ₂ O ₃ -	200	2,71	9,1	70±5				
MnO-SiO ₂	250	2,85	6,1	88±5				
Температура обжига 1250 °С								
SiC + 5 мас. % добавки Al ₂ O ₃ -	200	2,53	13,8	40±5				
MnO-SiO ₂	250	2,70	8,5	60±5				
SiC + 10 мас. % добавки Al ₂ O ₃ -	200	2,68	9,5	55±5				
MnO-SiO ₂	250	2,74	7,9	70±5				
SiC + 15 мас. % добавки Al ₂ O ₃ -	200	2,70	8,5	75±5				
MnO-SiO ₂	250	2,89	4,8	95±5				

Рис. 2. СЭМ-изображения сколов керамоматричных композитов: *a* — с 5 мас. % эвтектической добавки, обжиг при 1200 °C; *б* — с 10 мас. % эвтектической добавки, обжиг при 1250 °C; *в* — с 10 мас. % эвтектической добавки, обжиг при 1250 °C

табл. 2), при давлении прессования 200 и 250 МПа составила 2,01, 2,03, 2,05, 2,21, 2,25 и 2,32 г/см³.

Образцы композитов с содержанием эвтектической добавки 10 мас. %, полученные при 1200 и 1250 °С (рис. 2, б, в), представляют собой плотноспеченные зерна SiC, вокруг которых распределены области, содержащие закристаллизованный эвтектический расплав. Эти области невелики и равномерно распределены по всему объему материала. В процессе спекания рост зерен SiC отсутствует, поэтому их конечный размер идентичен размеру зерен исходного порошка и составляет 100-120 мкм. Таким образом, повышение температуры спекания при прочих равных условиях, как видно из табл. 1, приводит к росту плотности спеченных образцов. При 1250 °С их плотность достигает 98,60 % плотности монокристалла.

На спеченных образцах композитов исследовали предел прочности при изгибе (см. табл. 2). Наивысшее значение предела прочности при изгибе (95 МПа) получено на образцах композита с 15 мас. % эвтектической добавки, спеченных при 1250 °C. Следует отметить также, что при используемой

Библиографический список

1. **Каблов, Е. Н.** Высокотемпературные конструкционные композиционные материалы на основе карбида кремния для перспективных изделий авиационной техники / Е. Н. Каблов, Д. В. Гращенков, Н. В. Исаева [и др.] // Стекло и керамика. — 2012. — № 4. — С. 7–11. 2. **Wilkes, T. E.** Load partitioning in honeycomb-like silicon carbide aluminum alloy composites / *T. E. Wilkes, B. J. Harder, J. D. Almer, K. T. Faber* // Acta Mater. — 2009. — Vol. 57, № 20. — Р. 6234–6242.

3. **Щетанов, Б. В.** Металломатричные композиционные материалы на основе Al-SiC / Б. В. Щетанов, Д. В. Гращенков, А. А. Шавнев, А. Н. Няфкин // Авиационные материалы и технологии. — 2012. — № 8. — С. 373–380.

4. **Thostenson E. T.** Advances in the science and technology of carbon nanotubes and their composites: a review / *E. T. Thostenson, Z. Ren, T. W. Chou //* Compos. Sci. Technol. — 2001. — Vol. 61. — P. 1899–1912.

нагрузке 3,5 H на поверхностях образцов не образовывалось никаких трещин, что свидетельствует об их высокой трещиностойкости. Для сравнения: композиты SiC с 10 и 25 мас. %. добавки на основе Al_2O_3 -TiO₂, изготовленные спеканием в аргоне при 1550 °C, имели предел прочности при изгибе 65 и 80 МПа, соответственно [2, 4]. Композит SiC с 5 мас. % Al_2O_3 , полученный горячим прессованием [7], имел предел прочности при изгибе 74 МПа.

ЗАКЛЮЧЕНИЕ

Установлено, что добавка эвтектического состава в системе Al₂O₃-MnO-SiO₂ оказалась достаточно эффективной для спекания керамики из зернистого SiC при 1250 °C. С повышением температуры спекания от 1200 до 1250 °C наблюдается рост относительной плотности и прочности керамоматричных композитов на основе зернистого SiC, дисперсионноупрочненного субмикронными частицами эвтектики в системе Al₂O₃-MnO-SiO₂. Синтезированная из зернистого SiC керамика при давлении прессования 250 МПа имеет предел прочности при изгибе до (95 ±5) МПа, пористость 4,8 %.

5. **Житнюк, С. В.** Керамические материалы на основе карбида кремния, модифицированные добавками эвтектических составов / С. В. Житнюк, А. А. Евтеев, Г. В. Полатов, Н. А. Макаров // Успехи в химии и химической технологии. — 2014. — Т. XXVIII, № 8. — С. 110–112.

6. **Жариков, Е. В.** Получение нанокомпозитов SiC-MgAl₂O₄-Y₃Al₅O₁₂-MWCNTs методом искрового плазменного спекания / Е. В. Жариков, В. В. Капустин, П. П. Файков [и др.] // Материаловедение и инженерия. — 2017. — С. 175.

7. *Gubernat, A.* Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives / *A. Gubernat, L. Stobierski, P. Łabaj* // J. Eur. Ceram. Soc. — 2007. — Vol. 27, Iss. 2/3. — P. 781–789. ■

Получено 01.03.19 © Кхин Маунг Сое, Н. А. Попова, Е. С. Лукин, 2019 г.

40