- К. т. н. Ю. И. Комоликов¹ (🖂), д. т. н. И. Д. Кащеев², В. И. Пудов¹
- ¹ ФГБУН «Институт физики металлов имени М. Н. Михеева УрО РАН», г. Екатеринбург, Россия
- ² ФГАОУ ВО «Уральский федеральный университет», г. Екатеринбург, Россия

УДК 666.3:546.62-31]:771.537.2

СВОЙСТВА КЕРАМИКИ, ПОЛУЧЕННОЙ НА ОСНОВЕ ПОРОШКОВ МЕХАНИЧЕСКОЙ СМЕСИ ГИДРОКСИДА ЦИРКОНИЯ И ДОПАНТА

Приведены результаты исследований структуры, фазового состава и удельной поверхности порошков на основе диоксида циркония, получаемых методом термического разложения механической смеси гидроксида и стабилизирующей добавки. Изучены формообразование и спекание керамических образцов, полученных из прокаленных порошков, некоторые свойства керамики. Показано, что из синтезированных порошков может быть получена мелкозернистая плотная высокопрочная керамика с пределом прочности при изгибе 860 МПа и микротвердостью до 12–13 ГПа.

Ключевые слова: циркониевая керамика, гидроксид циркония, шликерное литье, низко- и высокопрокаленный порошок.

введение

зделия на основе циркониевой керамики И широко применяются в качестве огнеупорных конструкционных материалов в тех областях, где необходимы высокие показатели износостойкости, плотности, твердости, прочности при изгибе, стойкости к коррозии [1, 2]. Большинство порошков для получения керамики на основе ZrO₂ синтезируют методом химического соосаждения компонентов [3-5]. Этот метод представляет собой процесс, включающий мокрое смешение компонентов, осаждение гидроксидов с последующей их термообработкой до получения оксидов [4]. Это позволяет в широких пределах варьировать размер, кристаллическую структуру и химический состав получаемых частиц. Однако при использовании метода совместного осаждения может наблюдаться негомогенность систем диоксид циркония - стабилизирующий оксид (ZrO₂-Y₂O₃ (MgO, CaO и др.)), которая объясняется тем, что совместно осаждаемые гидроксиды должны выпадать в осадок при различных показателях рН [4, 6, 7]. Приливание раствора аммиака к смешанному раствору хлоридов приводит не к одновременному, а к частично последовательному осаждению гидроксидов. После их обезвоживания эта

> ⊠ Ю. И. Комоликов E-mail: yikom@yandex.ru

негомогенность переходит в твердые растворы на основе ZrO₂. Поэтому перед прокаливанием (синтезом твердых растворов) полученную смесь гидроксидов требуется предварительно гомогенизировать [7–10]. Гидроксид циркония, не содержащий стабилизирующей добавки, является одновременно промежуточным и товарным продуктом при переработке циркона и производится в большом количестве [3, 5]. Представляет интерес исследовать свойства керамики, получаемой из прокаленных порошков механической смеси гидроксида циркония и стабилизирующей добавки.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В качестве исходных материалов для исследований были выбраны порошки частично стабилизированного ZrO₂ с содержанием 5 мас. % Y₂O₃. Для приготовления порошков применяли высушенный гидроксид циркония, не содержащий стабилизирующей добавки. Гидроксид циркония был получен осаждением 25 %-ным водным раствором гидроксида аммония NH₄OH 1 М водного раствора оксихлорида циркония ZrOCl₂·8H₂O. Для приготовления растворов использовали бидистиллированную воду. Сушку осажденного гидроксида проводили в сушильном шкафу на воздухе при 150 °С. Стабилизирующую добавку (5 мас. % Y₂O₃) вводили путем смешения гидроксида циркония с раствором хлористого иттрия в полиэтиленовом барабане в течение 3 ч. Суспензию высушивали при 150 °С.

Высушенную смесь прокаливали при 900, 1000, 1100, 1200, 1300 и 1400 °С. Рентгенофазовый анализ (РФА) исходных порошков и порошков после отжига проводили на дифрактометре ДРОН-УМ1 с фильтрованным Си Ка-излучением при комнатной температуре. Съемку вели по точкам с шагом 0,1 град. Рентгеновские пики разделяли с помощью компьютерной программы на основе минимизации отклонения суммарного аппроксимирующего профиля от экспериментального. Идентификацию фаз проводили при сопоставлении пиков рентгенограммы с картотекой ASTM. Соотношение фаз ZrO₂ рассчитывали как отношение суммарных интегральных интенсивностей пиков, принадлежащих одной фазе, к суммарной интегральной интенсивности всех пиков. Удельную поверхность порошка измеряли методом БЭТ (сорбция-десорбция азота) на приборе TriStar 3000 V6.03А. Средний размер зерен порошков $d_{\rm cp}$, мкм, оценивали по формуле $d_{\rm cp} = 60000/\gamma S_{\rm yg}$, где γ — плотность, г/см³; $S_{\rm yg}$ удельная поверхность, см²/г.

Форму частиц определяли на электронном просвечивающем микроскопе JEM-2100. Образцы для механических испытаний формовали методом шликерного литья и спекали в лабораторной печи LHT 02/17 (Nabertherm). Плотность обожженных образцов определяли методом гидростатического взвешивания в спирте на весах Shumadzu AUW-220 D, оснащенных специальной приставкой. Механические свойства керамики оценивали на основании результатов испытания образцов на прочность и твердость. Предел прочности при изгибе определяли на установке Instron-1185, микротвердость — на установке Nanotest 600 с использованием алмазной пирамиды Виккерса. Для обработки результатов измерений использовали среднеарифметический показатель пяти измерений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По данным электронно-микроскопического анализа (рис. 1, *a*), высушенный порошок гидроксида циркония состоял из мельчайших частиц, сгруппированных в агрегаты. Средний размер агрегатов 0,84 мкм, основной массы (~ 67 %)

Рис. 1. Микроструктура порошка смеси Zr(OH)₄ + YCl₃: *а* — после сушки при 150 °C; *б* — после прокаливания при 900 °C; *в* — после прокаливания при 1300 °C

агрегатов 0,40-1,20 мкм (табл. 1), агрегаты имели форму, близкую к округлой.

Свойства порошка смеси Zr(OH)₄ + YCl₃, высушенного при 150 °C и прокаленного при 900, 1000, 1100, 1200, 1300 и 1400 °C, приведены в табл. 1. По данным РФА, присутствие свободного оксида иттрия в порошке, прокаленном даже при 900 °C, не обнаружено. Фазовый состав по-

Таблица 1. Физико-химические свойства порошков ZrO₂ + 5,0 мас. % Y₂O₃

Tuoningu 1. Wishko xumu reckine ebouchbu nopolitikob 2102 1 5,0 muci /0 1203								
Температура про-	Удельная поверх- ность, м²/г	Средний размер агрегатов, мкм	Максималь- ный размер агрегатов, мкм	Содержание, %, агрегатов размерами, мкм				Содержание
порошка, °С				< 0,25	0,25-0,40	0,40–1,20	> 1,20	фазы, %
Высушенная смесь	326	0,84	5,0	1,6	10,7	67,1	20,6	_
$Zr(OH)_4 + YCl_3$								
900	16	0,80	4,0	3,9	12,0	66,7	17,4	31,6
1000	6,9	0,82	8,0	0,2	11,0	67,4	21,4	20,7
1100	6,8	0,84	8,0	0,7	10,9	60,8	27,9	14,1
1200	4,4	0,86	10,0	1,2	10,0	60,1	28,7	13,7
1300	1,7	0,83	10,0	0,8	10,5	58,9	29,8	12,4
1400	1,2	0,87	10,0	1,0	10,1	57,6	31,3	12,2

рошков представлен смесью тетрагональной и моноклинной структур, причем содержание моноклинной фазы с повышением температуры прокаливания снижается (см. табл. 1). Следует отметить, что низкое содержание моноклинной структуры в этих порошках обусловлено малым (<1 мкм) размером частиц, что, в свою очередь, вызывает более активное взаимодействие оксида иттрия с диоксидом циркония и образование тетрагональной структуры, а также ограничивает процесс перехода тетрагональной фазы в моноклинную при последующем охлаждении [11, 12].

Установлено, что с повышением температуры прокаливания до 1100 °С микроструктура порошка практически не изменяется и сохраняется такой же, как и у высушенного гидроксида (см. рис. 1, б). Выше 1200 °С появляется тенденция к огранке частиц и уплотнению агрегатов (см. рис. 1, в). Результаты его гранулометрического анализа показали, что с повышением температуры прокаливания наблюдается очень незначительное агрегирование порошка: увеличиваются максимальный размер агрегатов от 4,0 до 10,0 мкм и содержание фракции 1,20 мкм. Средний размер агрегата практически не изменяется. Однако с повышением температуры прокаливания агрегаты становятся, по-видимому, более плотными, о чем свидетельствуют результаты определения удельной поверхности (см. табл. 1).

Из прокаленных порошков готовили шликер. Для этого порошки мололи в мельнице с шарами из ZrO₂ в течение 5 ч при соотношении материал : вода : шары соответственно 1:1,5:3. После помола суспензию отделяли от шаров, соляной кислотой изменяли pH до 2–3 и оставляли на 48 ч. В дальнейшем сливали избыточный водный раствор таким образом, чтобы концентрация твердой фазы в шликере составляла 50–60 мас. %; в результате плотность полученной суспензии составляла 1,5–1,8 кг/л. Установлено, что шликеры из порошков, прокаленных выше 1100 °С. обладают плохими литейными свойствами (шликер быстро расслаивается, медленно набирает массы). Изделия, отлитые из таких шликеров, не дают усадки в форме, их очень трудно извлекать из формы. Порошок, прокаленный при 1400 °С, был подвергнут дополнительному измельчению в шаровой мельнице в течение 30 ч для того, чтобы разбить более плотные агрегаты. Однако каких-либо положительных результатов это не принесло: образцы по-прежнему очень трудно извлекались из формы, хотя, по данным гранулометрического анализа. в процессе такого измельчения средний размер агрегатов снизился от 0,87 до 0,57 мкм. Содержание фракций 0,40-1,20 увеличилось от 57,6 до 79,3 %, и при этом резко снизилось содержание фракций 1,20 мкм (от 31.3 до 4.0 %).

Результаты исследований выбора режима обжига образцов керамики из порошков, полученных при разных температурах прокаливания, приведены в табл. 2. Керамика из порошков, прокаленных при 1000 °C, хорошо спекается, но обладает высокой усадкой, что приводит к значительной деформации изделий в процессе обжига. В этой связи имеются определенные трудности при изготовлении изделий из низкопрокаленных порошков (900 и 1000 °C). Керамика из порошков, прокаленных при 1100 °С и выше, хорошо спекается при 1450 °С с выдержкой 5-10 ч и при 1480 °C с выдержкой 3 ч. Однако при 1480 °С керамика с нулевой открытой пористостью имеет кажущуюся плотность 5,8 г/см³; общая (с учетом закрытой) пористость составляет 4,5-5,0 %. Исходя из табл. 2, наиболее оптимальным сочетанием физико-механических свойств обладает керамика, обожженная при 1450 °C с выдержкой 10 ч. Учитывая технологические факторы при изготовлении керамики, оптимально прокаливание порошка при 1100 °С. И хотя после обжига образцы из этих порошков

Температура обжига керамики, ⁰С (с выдержкой, ч)	Кажущаяся плотность, г/см³	Открытая пористость, %	Линейная усадка, %	Предел прочности при изгибе, МПа	Твердость по Виккерсу, ГПа	Содержание моноклинной фазы, %		
Температура прокаливания порошка 1000 °C								
1450 (5)	5,84	0,3	37,2	520	10,8	0,0		
1400 (10)	5,10	4,3	32,2	370	8,4	0,0		
Температура прокаливания порошка 1100 °C								
1450 (5)	5,77	0,1	24,2	750	12,0	8,4		
1450 (10)	6,05	0,0	24,6	860	12,3	10,2		
1480 (3)	5,80	0,0	24,3	645	12,1	9,1		
Температура прокаливания порошка 1200 °C								
1450 (5)	5,80	0,2	20,5	600	11,6	35,2		
1450 (10)	6,01	0,0	22,6	610	12,1	39,2		
1480 (3)	5,83	0,0	21,0	595	11,5	36,1		
Температура прокаливания порошка 1400 °C								
1450 (5)	5,70	0,2	14,5	600	11,0	66,1		
1450 (10)	5,81	0,0	16,4	600	11,4	69,2		
1480 (3)	5,72	0,2	14,5	590	11,1	67,4		

Таблица 2. Физико-химические характеристики керамики ZrO₂ – 5,0 мас. % Y₂O₃

имеют более высокую усадку, чем образцы из порошков, прокаленных при 1200 и 1400 °C, она остается допустимой при производстве керамики. Следует также отметить, что материал, прокаленный при 1400 °C и подвергнутый дополнительному помолу, не вполне удовлетворяет требованиям производства керамики, поскольку изделия, хотя и имеют невысокую усадку, сохраняют высокую общую пористость, достигающую 6,5 %.

По данным РФА, керамика из материала, прокаленного при 1100 °С. представлена только тетрагональной структурой. Присутствие моноклинной фазы не обнаружено, что обусловлено малым размером исходных частиц. И, как следствие, такой фазовый состав и мелкозернистая структура (рис. 2) обеспечивают высокий предел прочности при изгибе, равный 860 МПа. Керамика из материалов, прокаленных при более высоких температурах, по фазовому составу представлена смесью моноклинной и тетрагональной структур, причем с повышением температуры прокаливания содержание в керамике моноклинной структуры увеличивается. Данные электронно-микроскопического анализа показывают (см. рис. 2), что с увеличением выдержки при 1450 °C от 5 до 10 ч происходит незначительная рекристаллизация зерен (порошок прокален при 1100 °С), но микроструктура материала при этом сохраняет субмикронный характер.

Результаты исследований по изготовлению керамики из смеси низко- (1000 °C) и высокопрокаленных (1200 и 1300 °C) порошков приведены в табл. З. Полученные результаты свидетельствуют о том, что наилучшими свойствами

Рис. 2. Микроструктура излома образца, спеченного при 1450 °C с выдержкой 10 ч

обладает керамика из смеси порошков, прокаленных при 1000 и 1200 °С, при соотношении 40 : 60 соответственно. Свойства этой керамики очень близки к свойствам керамики из порошков, прокаленных при 1100 °С.

ЗАКЛЮЧЕНИЕ

Проведенные исследования свойств керамики на основе ZrO₂, изготовленной из порошков, получаемых прокаливанием механической смеси гидроксида циркония и стабилизирующей добавки, показывают, что этот метод синтеза может быть успешно применен для изготовления прочной керамики. Использование готового гидроксида циркония позволяет исключить стадию совместного осаждения гидроксидов, сопровождаемую применением токсичного раствора аммиака с возможным выбросом и потерями агрессивного раствора солей циркония и стабилизирующей добавки, на начальной ста-

Таблица 3. Физико-химические характеристики керамики из смеси порошков, прокаленных при 1000, 1200 и 1300 °C*

Температура обжига керамики, °С (с выдержкой, ч)	Кажущаяся плотность, г/см ³	Открытая пористость, %	Линейная усадка, %	Предел прочности при сжатии, МПа	Твердость по Виккерсу, ГПа	Содержание моноклинной фазы, %		
При соотношении прокаленных порошков 80:20								
1450 (5)	5,86/5,27	0,0/6,0	32,6/30,6	600/400	11,8/7,2	20,5/28,1		
1450 (10)	6,05/6,05	0,0/0,0	32,9/32,3	620/610	12,1/11,9	20,2/21,0		
1480 (3)	5,89/5,87 0,0/0,1		32,4/31,8	600/550	12,0/10,5	56,7/43,9		
При соотношении прокаленных порошков 60:40								
1450 (10)	5,80/5,21	0,1/6,2	27,3/25,8	620/300	12,0/6,9	40,6/51,0		
1480 (3)	6,05/6,04	0,0/0,0	27,9/27,4	740/620	12,1/12,1	33,2/35,1		
1450 (5)	5,83/5,72	0,1/0,3	27,4/26,9	650/600	12,1/10,4	51,4/62,3		
При соотношении прокаленных порошков 50:50								
1450 (5)	5,74/5,13	0,2/6,7	27,2/24,3	650/285	12,3/6,4	49,7/57,0		
1450 (10)	6,04/6,02	0,04/6,02 0,0/0,0		660/650	12,5/12,4	43,1/49,2		
1480 (3)	5,75/5,71	0,2/0,2	27,0/26,5	650/620	12,2/10,5	63,8/67,0		
При соотношении прокаленных порошков 40:60								
1450 (5)	5,72/5,10	0,2/7,6	24,2/21,8	600/225	12,0/6,0	50,3/59,4		
1450 (10)	6,03/6,00	0,0/0,0	24,9/24,3	640/600	12,0/11,0	61,4/66,1		
1480 (3)	5,74/5,71	0,2/0,2	24,0/22,6	620/590	12,1/10,5	60,9/66,0		
* В числителе приведены свойства керамики из порошков, прокаленных при 1000 и 1200 °С, в знаменателе — при 1000 и 1300 °С.								

дии процесса. Дисперсный состав порошков, получаемых из механической смеси гидроксида циркония и стабилизирующей добавки, позволяет изготовлять на их основе керамику без стадии интенсивного измельчения. Исключение этой стадии из технологического процесса позволит сократить энергозатраты и его длительность.

* * *

Работа выполнена в рамках госзаказа по теме «Диагностика» № АААА-А18-118020690196-3.

Библиографический список

1. *Бакунов, В. С.* Керамика из высокоогнеупорных окислов / *В. С. Бакунов, В. Л. Балкевич, А. С. Власов* [и др.]. — М. : Металлургия, 1977. — 304 с.

2. *Sato, T.* Improvement to the thermal stability of yttriadoped tetragonal zirconia polycrystals by alloying with various oxides / *T. Sato, S. Ohtaki, T. Endo, M. Shimada //* Advances in Ceramics, Vol. 24, Science and Technology of Zirconia III ; ed. by S. Somiya, N. Yamamoto, H. Yanagida (eds.). — Westerville, Ohio : The American Ceramic Society, Inc., 1988. — P. 28–38.

3. Цирконий, циркон, диоксид циркония [Электронный pecypc] / Режим доступа : www.URL://http://www. espadent.ru/index.php/2011-04-19-14-18-22.

4. **Дудник, Е. В.** Методы получения дисперсных порошков на основе диоксида циркония / Е. В. Дудник, З. А. Зайцева, А. В. Шевченко [и др.] // Порошковая металлургия. — 1993. — № 7. — С. 24-26.

5. **Блументаль, У. Б.** Химия циркония / *У. Б. Блументаль.* — М. : Изд-во иностр. лит-ры, 1963.

6. **Кравчик, К. В.** Влияние условий осаждения гидроксидов циркония и иттрия на фрактальную структуру образующихся ксерогелей и осадков состава 0,97ZrO₂·0,03Y₂O₃ / *К. В. Кравчик, Ю. П. Гомза, О. В. Пашкова* [и др.] // Неорг. материалы. — 2007. — Т. 43, № 3. — С. 307-312. 7. *Стенина, И. А.* Влияние величны pH осаждения и термообработки на свойства гидратированного оксида циркония / И. А. *Стенина, Е. Ю. Воропаева, А. Г. Вересов* [и др.] // Журнал неорганической химии. — 2008. — Т. 53, № 3. — С. 397–403.

8. **Hu**, **M. Z. C.** Nanocrystallization and phase transformation in monodispersed ultrafine zirconia particles from various homogeneous precipitation methods / *M. Z. C. Hu*, *R. D. Hunt*, *E. A. Payzant*, *C. R. Hubbard* // J. Am. Ceram. Soc. — 1999. — Vol. 82, \mathbb{N} 9. — P. 2313–2320.

9. *Ramamoorthy, R.* Synthesis and study of nanostructured ytria stabilized zirconia / *R. Ramamoorthy, R. N. Viswanath, S. Ramasamy.* — Department of Nuclear Physics, University of Madras, Guindy Campus, Madras — 600 025. INDIA, 1995.

10. **Лукин, Е. С.** Особенности получения прочной керамики, содержащей диоксид циркония / Е. С. Лукин, Н. А. Попова, Н. И. Здвижкова [и др.] // Огнеупоры. — 1991. — № 9. — С. 5–7.

Lukin, E. S. Specific features of the production technology of high-strength ceramics containing zirconium dioxide / E. S. Lukin, N. A. Popova, N. I. Zdvizhkova [et al.] // Refractories. — 1991. — Vol. 32, № 9/10. — P. 438-443.

11. **Valmalette, J. Ch.** Size effects on the stabilization of ultrafine zirconia nanoparticles / *J. Ch. Valmalette, M. Isa* // Chem. Mater. — 2002. — Vol. 14, № 12. — P. 5098–5102.

12. **Djurado, E.** Crystallite size effect on the tetragonalmonoclinic transition of undoped nanocrystalline zirconia studied by XRD and raman spectrometry / *E. Djurado, P. Bouvier, G. Lucazeau* // J. Solid State Chem. — 2000. — Vol. 149, $N \ge 2$. — P. 399–407.

> Получено 12.11.18 © Ю. И. Комоликов, И. Д. Кащеев, В. И. Пудов, 2019 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

16-18 июня 2019 г.

Университет шт. Иллинойс,

ceramics.org/cements2019 г. Урбана-Шампейн, США

10-е совещание «Достижения в области материалов на основе цемента» Техническая программа

• Аддитивное производство с использованием цементных материалов

- Химия, обработка и гидратация цемента
- Наука вычислительных материалов
- Моделирование долговечности и срока службы
- Методы исследования и характеристики материалов
- Реология

48

- «Умные» материалы и датчики
- Дополнительные и альтернативные цементные материалы
- Нанотехнологии в цементных материалах
- Неразрушающий контроль