А. А. Васин¹, к. т. н. В. П. Тарасовский^{1, 2} (^[]), к. т. н. А. Ю. Омаров¹, В. В. Рыбальченко¹

¹ ФБГОУ ВПО «МГИУ», Москва, Россия ² ЗАО «НТЦ «Бакор», Москва, г. Щербинка, Россия

удк 666.762.091 ИССЛЕДОВАНИЕ ПРОЦЕССА СИНТЕЗА КЕРМЕТОВ ИЗ ПОРОШКОВ, ПОЛУЧЕННЫХ ХИМИЧЕСКИМ ДИСПЕРГИРОВАНИЕМ AI-Mg (20 мас. %)-СПЛАВА

В процессе химического диспергирования Al-Mg (20 мас. %)-сплава получаются порошки, содержащие частички металлов. Для получения кермета был использован метод самораспространяющегося высокотемпературного синтеза. Реакционное спекание в режиме фильтрационного горения порошковых заготовок реализуется путем их нагрева на воздухе до 550-600 °C с последующим инициированием экзотермической реакции горения металла.

Ключевые слова: кермет, гидроксид алюминия, порошок, фильтрационное горение, микроструктура, химическое диспергирование.

введение

азработка керметов с различными фазовыми составами и типами структур позволяет получать новые композиционные материалы с комплексом свойств, делающим перспективным их применение в различных областях техники. Интерес к кермету состава MgO-Al вызван тем, что в нем может быть достигнуто сочетание высоких прочности и огнеупорности, свойственных оксиду магния, с пластичностью и теплопроводностью, характерными для алюминия. Такой кермет, имея относительно невысокую плотность, может обладать достаточно высокими трещиностойкостью, ударной вязкостью и стойкостью к усталостному разрушению. Следует отметить, что потенциальным положительным свойством кермета может являться его высокая термостойкость благодаря присутствию весьма теплопроводной металлической составляющей. Кроме того, он может быть также перспективен для использования в качестве некоторых элементов конструкций высокотемпературной техники, эксплуатируемых в воздушной среде в условиях воздействия термических напряжений.

Керметы в настоящее время получают различными методами. В основном эти методы достаточно сложны и требуют специального дорогостоящего оборудования. Судя по отдельным публикациям [1], перспективным и весьма

> ⊠ В. П. Тарасовский E-mail: tarasvp@mail.ru

экономичным способом получения керметов состава MgO-Al может быть реакционное спекание заготовок из химически диспергированного алюминиевого Al-Mg (20 мас. %)-сплава. Однако в связи с отсутствием сведений, требующихся для практической реализации данного способа, актуальными являются исследование и разработка технологического процесса получения кермета состава MgO-Al реакционным спеканием.

В данной статье представлены результаты исследования процесса реакционного спекания порошков, полученных химическим диспергированием Al-Mg (20 мас. %)-сплава, и разработка на этой основе эффективной технологии получения кермета состава MgO-Al, характеризующегося сочетанием повышенных прочности и термостойкости с малой плотностью.

МЕТОДИКА СИНТЕЗА ПОРОШКА ИЗ AI-Mg (20 мас. %)-СПЛАВА ДЛЯ ПОЛУЧЕНИЯ КЕРМЕТА

Химическое диспергирование Al-Mg-сплава проводили путем его обработки 20 %-ным водным раствором едкого натра [2] в емкости из термостойкого и химически стойкого стекла при непрерывном теплоотводе и перемешивании. Полученный из маточного раствора осадок фильтровали и многократно отмывали дистиллированной водой путем фильтрации под вакуумом. Объем воды, затрачиваемый на каждый цикл отмывки, составлял 1 л.

Изменение показателя pH среды (осадка в виде суспензии) после каждого цикла отмывки определяли с использованием pH-метра HI 98108 (фирма «Hanna instruments»). Показатели рН среды после *n*-кратной отмывки осадка путем декантации приведены ниже:

n 0°1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18°2 <u>рН 12,812,6125 12,0118 11,511,311,311,210,097 96 96 92 92 91 91 91 91</u> *1 Значение рН при n = 0 относится к исходному осадку до его отмывки.

^{*2} Значение pH = 9,1 соответствует максимальной степени отмывки осадка.

Отличительной особенностью процесса химического диспергирования Al-Mg (20 мас. %)-сплава является значительный суммарный выход крупных частиц порошка, принадлежащих фракциям от <50 до 315/200 мкм, полученных с помощью мокрого ситового анализа. Распределение массовой доли частиц осадка продукта химического диспергирования сплава представлено на рис. 1. Для исследования была выбрана фракция 315/200 мкм (рис. 2). Это крупнозернистые частицы, среди которых чисто визуально можно выделить частицы серого оттенка и белого цвета. Рентгеновский фазовый анализ проводили на установке ДРОН-3 по стандартной методике [3]. Съемку дифрактограмм вели на Си Кα-отфильтрованном излучении (фильтр — никелевый) при напряжении на труб-

Рис. 1. Распределение массовой доли частиц осадка — продукта химического диспергирования Al-Mg (20 мас. %)-сплава, по фракциям в результате мокрого ситового анализа

Рис. 2. Вид частиц порошка фракции 315/200 мкм после осаждения и сушки при 70 °С. Частицы: 1 — пластинчатые; 2 — остроугольные; 3 — изометричные; 4 — сфероидизированные

ке 30 кВ и силе тока 20 мА. Для идентификации фаз использовали данные картотеки ASTM.

Фазовый состав порошка фракции 315/200 мкм представлен гиббситом $Al(OH)_3$ (18,3±2 мас. %) с моноклинной кристаллической решеткой; байеритом $Al(OH)_3$ (2,9±1 мас. %) с гексагональной кристаллической решеткой; $Mg_2Al(OH)_6(CO_3)_{0,5}H_2O$ (59,0±4 мас. %); интерметаллидом Al_3Mg_2 (19,8±4 мас. %) с кубической кристаллической решеткой.

Для получения компактных образцов кермета был использован метод самораспространяющегося высокотемпературного синтеза (CBC), реализуемый в так называемых фильтрационных системах [4].

С позиций классических представлений о CBC-процессах для осуществления фильтрационного горения (ФГ) необходимо произвести зажигание поверхности пористой заготовки, поровое пространство которой состоит из системы открытых сообщающихся и газонаполненных пор. После этого феноменологически наблюдается направленное распространение плоского фронта горения в результате протекания экзотермической реакции в системе газ – твердое.

Для проведения ФГ [3] используют пористые заготовки, полученные из металлических порошков, металлических сплавов, кремния, бора. В качестве газовой среды применяют воздух, кислород, азот, водород, СО, СО₂. Тогда продуктами реакции газ – твердое являются оксиды, нитриды, гидриды и карбиды.

РЕАКЦИОННОЕ СПЕКАНИЕ ОБРАЗЦОВ ИЗ ПОРОШКОВ, ПОЛУЧЕННЫХ МЕТОДОМ ХИМИЧЕСКОГО ДИСПЕРГИРОВАНИЯ AI-Mg (20 мас. %)-СПЛАВА, НА ВОЗДУХЕ В РЕЖИМЕ ФГ

Образцы для спекания получали прессованием порошков фракции 315/200 мкм под давлением 100-700 МПа. Открытая пористость образцов составляла от 49 до 53 % (определяли по ГОСТ 2409). Для проведения процесса реакционного спекания в режиме ФГ порошковые заготовки устанавливали на подставку из пенокорунда и полученную садку образцов устанавливали в муфельную печь.

В результате нагрева по заданному режиму (рис. 3) при определенной температуре за счет поглощения тепла нагретой печи происходило зажигание поверхности образца: при 500 °С для образца 1, отпрессованного под давлением 100 МПа, точка *а*, и при 600 °С для образца 2, отпрессованного под давлением 700 МПа, точка *b*.

Более низкая температура зажигания образца 1 по сравнению с температурой зажигания образца 2 связана с более значительной долей открытого порового пространства в образце 1 и активной поверхности, участвующей в экзотермической реакции газ – твердое (рис. 4, кадр 2). По этой же причине $T_{\pi}^{i}(\max) > T_{\pi}^{2}(\max)$.

Рис. 3. Режим реакционного спекания на воздухе порошковых заготовок (образцов) в режиме $\Phi\Gamma$: 1 — изменение температуры в печном пространстве ($T_{\rm II}$), измеренное термопарой; 2, 3 — изменение яркостной температуры ($T_{\rm sl}$) спекаемой заготовки, измеренное пирометром; точка a — температура начала «зажигания» образца, отпрессованного из порошка фракции 315/200 мкм под давлением 100 МПа; точка b — температура начала «зажигания» образца отпрессованного из порошка фракции 315/200 мкм под давлением 700 МПа; точки c и d — температура «погасания» образцов ($T_{\rm sl} = T_{\rm II}$); точка k — завершение изотермической выдержки

Далее идет распространение фронта горения с поверхности образца внутрь его объема и наблюдается достижение максимальной яркостной температуры $T_{\pi}^{1}(\max)$ для образца 1 1200 °C (рис. 4, кадр 3) и $T_{\pi \text{ (max)}}^2$ для образца 2 900 °C. Измерение яркостной температуры проводили пирометром марки CEM DT-9862.

Максимальные значения яркостной температуры превышают температуру плавления алюминия для образца 1 в 1,8 раза, для образца 2 в 1,4 раза. Однако выброса наружу расплава из объема образцов не наблюдалось. Можно предположить, что это связано с высокой прочностью поверхностных оксидных пленок на поверхности частиц Al-Mg-сплава, превышаюшей напряжения, возникающие при появлении перегретого металлического расплава. В процессе ФГ перегретый металлический расплав заполняет поровое пространство спекаемой порошковой заготовки. Вследствие этого ее проницаемость для газообразного компонента реакции непрерывно снижается. В результате наблюдается постепенное понижение яркостной температуры образцов вплоть до полного их погасания (см. рис. 3, точки c и d, $T_{\pi} = T_{\pi}$, $\Delta P =$ = 0, для образца 1 — рис. 4, кадры 4-6).

В процессе последующей изотермической выдержки (см. рис. 3, отрезок *dk*) происходит усадка образцов вследствие спекания высокодисперсных продуктов реакций. Значение усадки изменяется от 21 до 25 %. Относительную линейную усадку оценивали по изменению высоты призматических образцов размерами 8×8×50 мм после ФГ. Полученные в результате ФГ образцы кермета имели открытую пористость 59–64 %, кажущуюся плотность 1,21–1,25 г/см³ (определяли по ГОСТ 2409), предел прочности при сжатии 120–160 МПа (определяли по ГОСТ 23775). Микроструктура образцов показана на рис. 5.

Рис. 4. Кинограмма процесса фильтрационного горения образца, спрессованного из порошка фракции 315/200 мкм под давлением 100 МПа: 1 — отпрессованный образец на подставке из пенокорунда; 2 — зажигание образца, точка *а* на рис. 3; 3 — горение образца, T_{a}^{f} (max) на рис. 3; 4, 5 — процесс погасания образца; 6 — окончание фильтрационного горения образца, точка *с* на рис. 3

Рис. 5. Микроструктура поверхности излома кермета, спеченного из порошка фракции 315/200 мкм: 1 — диффузионносвязанные частицы (зерна); 2 — щелевидные поры; 3 — полости, образованные за счет вырыва зерен; 4 — гладкая поверхность разрушения зерна вследствие квазихрупкого излома; 5 — зона контакта зерен, в котором реализуется «жидкофазное сращивание» при удельном давлении прессования 100 (*a*) и 700 МПа (*б*)

Дальнейшие исследования процесса получения кермета методом ФГ показали, что конечный фазовый состав спеченного кермета (соотношение фаз металл – оксид металла) определяется главным образом величиной исходной пористости порошковой заготовки и выбранным режимом реакционного спекания. Варьируя эти факторы, можно добиваться сохранения в составе кермета значительной доли металла либо полного его окисления.

ЗАКЛЮЧЕНИЕ

Установлено, что реакционное спекание в режиме фильтрационного горения порошковых заготовок реализуется путем их нагрева на воздухе до 550-600 °C с последующим инициированием экзотермической реакции горения металла (стадии «зажигания»), которая поддерживается определенное время за счет всасывания воздуха в поровое пространство спекаемой заготовки вследствие перепада парциального давления кислорода воздуха, содержащегося в порах и омывающего заготовку.

Библиографический список

1. **Zeerleder**, **A**. Über Sintern von Aluminiumlegierungen / A. Zeerleder // Z. Metallkunde. — 1950. — Bd 41, № 8. — S. 228–233.

2. **Омаров, А. Ю.** Технологическая схема спекания нанодисперсных порошков, полученных методом химического диспергирования / А. Ю. Омаров, Ф. З. Бадаев, Ю. Г. Трифонов // Новые огнеупоры. — 2012. — № 10. — С. 32-35.

3. **Лукин, Е. С.** Технический анализ и контроль производства керамики / Е. С. Лукин, Н. Т. Андрианов. — М. : Стройиздат, 1986. — 272 с. Яркостная температура спекаемых заготовок 900–1200 °С. При этих условиях прочность поверхностных оксидных пленок на поверхности частиц Al-Mg-сплава превышает напряжения, возникающие при появлении перегретого металлического расплава, поэтому его выброса из объема спекаемой заготовки не происходит.

В процессе реакционного спекания в режиме фильтрационного горения окисление металлической фазы происходит за счет диффузии атомарного кислорода к металлическому расплаву через поверхностные оксидные пленки.

* * *

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации в рамках выполнения научноисследовательской работы «Технология, структура и свойства новых алюмооксидных керамик из химически диспергированных сплавов алюминия с цирконием, ванадием и молибденом» по государственному заданию № 11.425.2014/К на оборудовании Центра коллективного пользования «Наукоемкие технологии в машиностроении».

4. Левашов, Е. А. Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза / Е. А. Левашов, А. С. Рогачев, В. И. Юхвид [и др.]. — М.: БИНОМ, 1999. — 176 с. ■

> Получено 30.09.14 © А. А. Васин, В. П. Тарасовский, А. Ю. Омаров, В. В. Рыбальченко, 2015 г.