Д. т. н. **В. В. Кузин** (🖾), к. т. н. **М. Ю. Фёдоров**, к. т. н. **М. А. Волосова**

ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия

УДК 621.924.93:666.3 НАЗНАЧЕНИЕ РЕЖИМА СТРУЙНО-АБРАЗИВНОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ Si₃N₄-КЕРАМИКИ С УЧЕТОМ НАПРЯЖЕННОГО СОСТОЯНИЯ РАЗНЫХ ФАЗ ПОВЕРХНОСТНОГО СЛОЯ

Выявлено влияние силовых и тепловых воздействий, характерных для струйно-абразивной обработки, на распределение напряжений в разных фазах поверхностного слоя Si₃N₄-керамики. На основе установленных закономерностей предложен подход к выбору режимов этой обработки при предварительных и финишных проходах.

Ключевые слова: Si₃N₄-керамика, струйно-абразивная обработка, поверхностный слой, напряжения.

введение

•труйно-абразивная обработка (САО) — современный метод высокопроизводительного формообразования керамических деталей, который обладает широким технологическим потенциалом, в том числе возможностью управлять состоянием их поверхностного слоя [1-6]. При этом микрорельеф поверхности керамики формируется за счет многочисленных ударных воздействий свободных абразивных зерен, перемещающихся со сверхвысокой скоростью в направлении к заготовке [7]. Под действием этих скоротечных высокоэнергетических контактов припуск с заготовок снимается путем непрерывного локального разрушения поверхностного слоя [8, 9]. Изменение основных параметров режима САО (давление абразивной струи, расстояние от торца фокусирующего сопла до поверхности заготовки, расход абразива, скорость продольного перемещения абразивной головки) позволяет изменять микрорельеф обработанной поверхности [10], а также формировать морфологический рисунок поверхности от сильно развитого со следами вырыва зерен до сглаженного и практически бездефектного [11].

Вид микрорельефа определяется характером разрушения поверхностного слоя керамики в результате воздействия единичным абразивным зерном; при этом действуют как транскристаллитный, так и межкристаллит-

ный механизмы [10]. При транскристаллитном разрушении формируется сглаженный микрорельеф за счет скалывания фрагментов единичных зерен, а при межкристаллитном — развитый микрорельеф при разрушении локальных объемов поверхности керамики. Правильно выбрать режим САО для предварительных проходов, при которых важно обеспечить снятие наибольшего припуска, и финишных проходов, цель выполнения которых — создание бездефектного поверхностного слоя, возможно с учетом основных закономерностей разрушения керамики под действием высокоэнергетических абразивных зерен [12-14]. Реализовать этот подход можно с использованием методов механики деформируемого твердого тела и исследованием напряженно-деформируемого состояния поверхностного слоя керамической заготовки при САО [15-18]. Поэтому исследование напряженно-деформированного состояния поверхностного слоя разных керамических материалов при САО, определяющего характер его разрушения, является актуальной научной задачей.

Напряжения в разных фазах поверхностного слоя керамики на основе оксида алюминия при САО изучено ранее [19–21]. В отношении нитридной керамики аналогичные исследования не выполнялись. Цель работы — исследование методом численного моделирования влияния силовых и тепловых воздействий, характерных для САО, на распределение напряжений в разных фазах поверхностного слоя Si₃N₄-керамики и формирование подхода к выбору режимов этого процесса при предварительных и финишных проходах.

МЕТОДИКА ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ

В работе использовали метод математического моделирования, хорошо зарекомендовавший себя в решении разноплановых задач, в том числе исследовании неоднородности напряженного состояния в объемах и поверхностях структурных элементов керамики [22, 23]. При разработке модели напряженно-деформированного состояния поверхностного слоя нитридной керамики при САО использовали подход, сформулированный в работах [24, 25]. Расчетная схема представлена в виде асимметричной конструкции, состоящей из горизонтально расположенного зерна эллипсоидной формы, имеющего размер a = 3 мкм и b = 2 мкм (рис. 1, a). Это зерно частично заделано в матрицу через межзеренную фазу толщиной $\delta_f = 0,2$ мкм. К участку свободной поверхности зерна прикладывали сосредоточенную силу (F = 0,005 H под углом $\alpha = 30^{\circ}$), тепловой поток ($Q = 1, 2 \cdot 10^9$ Вт/м²), а также комбинированную нагрузку ($F = 0.005 \text{ H} (\alpha = 30^{\circ}) +$ + Q = 1,2 · 10⁹ Вт/м²). Отвод тепла с поверхностей осуществляли во внутренний объем керамики с коэффициентом $h_a = 6 \cdot 10^5$ Вт/(м²·град).

Исследовали керамику системы Si₃N₄-Y₂O₃-Si₃N₄, в которой зерно и матрица выполнены из нитрида кремния, а межзеренная фаза — из оксида иттрия. Свойства этих материалов приведены в статье [26]. Для анализа напряжений использовали метод контрольных точек (КТ) [27]. Выделенные КТ располагались (рис. 1, б) в объеме зерна (объем А), в поверхности зерна, примыкающей к межзеренной фазе (поверхность Б), в поверхности межзеренной фазы, примыкающей к зерну (поверхность В), в поверхности межзеренной фазы, примыкающей к матрице (поверхность Г) и в поверхности матрицы, примыкающей к межзеренной фазе (поверхность *Д*). В объеме *А* зерна были выделены КТ1-КТ6. в поверхности Б — КТ7-КТ23, в поверхности В — КТ24–КТ40, в поверхности Γ — КТ41–КТ57 и в поверхности Д — КТ58-КТ74.

Численные эксперименты выполняли в автоматизированной системе термопрочностных расчетов RKS-ST v.1.0 [26]. Рассчитывали напряжения σ_{11} , σ_{22} , σ_{12} и интенсивность напряжений σ_i . С использованием результатов расчетов

определяли распределение интенсивности напряжений σ_i в объеме зерна A и поверхностях E, B, Γ и \square (диапазон изменения Σ_{σ_i}) и средние значения σ_{ic} .

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты расчетов σ_{11} , σ_{22} , σ_{12} и σ_i в объеме Aи поверхностях Б, В, Г и Д под действием сосредоточенной силы F = 0,005 H, действующей под углом α = 30°, показаны на рис. 2. Видно, что в объеме А (см. рис. 2, а) значения всех напряжений уменьшаются от его поверхности к центру: σ_{11} — от -2025 до -380 МПа, σ_{22} – от -960 до -10 МПа, σ₁₂ — от 680 до 170 МПа и σ_i — от 2120 до 480 МПа. В поверхности Б (см. рис. 2, б) о₁₁ изменяются от -175 до 80 МПа, σ_{22} — от -1050 до 80 МПа, σ₁₂ — от -35 до 220 МПа и σ_i — от 155 до 975 МПа. В поверхности *В* (см. рис. 2, *в*) σ_{11} изменяются от -165 до 65 МПа, σ_{22} — от -920 до 10 МПа, σ_{12} — от -245 до 205 МПа и о_i — от 1010 до 115 МПа. В поверхности *Г* (см. рис. 2, *г*) σ₁₁ изменяются от -210 до 90 МПа, σ₂₂ — от -665 до 15 МПа, σ₁₂ — от -700 до 185 МПа и *σ_i* — от 1265 до 120 МПа. В поверхности Д (см. рис. 2, ∂) напряжения σ₁₁ изменяются от -165 до 40 МПа, σ_{22} — от -570 до 5 МПа, σ_{12} — от -130 до 190 МПа и *σ_i* — от 110 до 590 МПа.

Установлено, что под действием теплового потока $Q = 1,2.10^9$ Вт/м² в объеме A и поверхностях Б, В, Г и Д температура снижается по мере удаления от участка приложенного теплового потока (рис. 3). Например, в объеме А (см. рис. 3, а) температура равномерно снижается от 2247 до 1056 °C. В поверхности зерна (см. рис. 3, б) температура изменяется по более сложному закону — на участке КТ7-КТ16 температура снижается с 1291 до 593 °C, а на участке КТ16-КТ23 повышается с 593 до 719 °С. По аналогичному закону изменяется температура в других поверхностях (В, Г и Д); на участке КТ24-КТ34 поверхности В температура снижается с 1079 до 550 °С, а на участке КТЗ4-КТ40 этой поверхности повышается с 550 до 658 °C. На участке КТ41-КТ50 поверхности Г температура снижается с 963 до 524 °С, а на участке КТ51-КТ57 повышается с 524 до 646 °C. На участке КТ58-КТ68 поверхности Д температура снижается с 740 до 485 °C, а на участке КТ68-КТ74 повышается с 485 до 585 °С.

Рис. 1. Расчетная схема (*a*) и ее фрагмент с выделенными объемом и поверхностями (б)

Результаты расчетов σ_{11} , σ_{22} , σ_{12} и σ_i в объеме A и поверхностях E, B, Γ и \square под действием теплового потока $Q = 1, 2 \cdot 10^9$ Вт/м², действующего на участке зерна, показаны на рис. 4. Видно, что под действием тепловой нагрузки напряжения имеют более сложное распределение как в объеме A, так и в поверхностях E, B, Γ и \square . В объеме A (см. рис. 4, a) σ_{11} из-

 σ_i

 σ_{2}

 σ_{12}

 σ_{11}

5

4

17

34

51

68

19

36

53

70

21

38

55

72

б

а

ΚT

б

KT

в

ΚT

ΚT

ΚT

д

меняются от -156 до -221 МПа, $\sigma_{_{22}}$ — от -320 до 92 МПа, $\sigma_{_{12}}$ — от 90 до -16 МПа и σ_i — от 213 до 315 МПа. В поверхности Б (см. рис. 4, б) σ₁₁ изменяются от -216 до -399 МПа, σ_{22} — от -198 до 76 МПа, σ_{12} — от -170 до 67 МПа и σ_i — от 215 до 388 МПа. В поверхности В (см. рис. 4, в) о₁₁ изменяются от -300 до 534 МПа, σ₂₂ — от -436 до 36 МПа, σ₁₂ — от

-164 до 154 МПа и σ_i — от 387 до 550 МПа. В поверхности Γ (см. рис. 4, г) σ₁₁ изменяются от -248 до -278 МПа, σ_{22} — от -517 до 61 МПа, σ_{12} — от -168 до 151 МПа и σ_i — от 313 до 766 МПа. В поверхности Д σ₁₁ изменяются от -119 до -497 МПа, σ_{22} — от 156 до -29 МПа, σ_{12} — от 58 до -148 МПа и *σ_i* — от 132 до 629 МПа.

3

13

30

47

64

 $= 1,2.10^9 \text{ Bt/m}^2$

поверхностях Б (б), В (в), Г (г) и Д (∂) под действием Q =

15

32

49

66

Рис. 3. Изменение температуры в объеме A(a) и поверхности B(b) под действием $Q = 1,2 \cdot 10^9 \text{ Br/m}^2$

15

17

19

21 KΤ Результаты расчетов σ_{11} , σ_{22} , σ_{12} и σ_i в объеме *А* и поверхностях *Б*, *В*, *Г* и *Д* под действием комбинированной нагрузки (*F* = 0,005 H (α = 30°) + + *Q* = 1,2 · 10⁹ Вт/м²) показаны на рис. 5. Установлено, что под действием этой нагрузки в объеме *A* (см. рис 5, *a*) σ_{11} изменяются от -602 до -2168 МПа, σ_{22} — от -1239 до 91 МПа, σ_{12} — от 149 до 634 МПа и σ_i — от 682 до 2180 МПа. В поверхности *Б* (см. рис. 5, *б*) σ_{11} изменяются от -318 до -439 МПа, σ_{22} — от -1410 до 137 МПа, σ_{12} — от -136 до 222 МПа и σ_i — от 355 до 1272 МПа. В поверхности *B* (см. рис. 5, *е*) σ_{11} изменяются от -369

Рис. 5. Характер изменения напряжений в объеме A (a), поверхностях F (b), B (b), Γ (c) и Д (∂) под действием комбинированной нагрузки (F = 0,005 H ($\alpha = 30^{\circ}$) + $Q = 1,2 \cdot 10^{9}$ Вт/м²)

до -677 МПа, σ_{22} — от -157 до -855 МПа, σ_{12} — от -274 до 209 МПа и σ_i — от 444 до 807 МПа. В поверхности Γ (см. рис. 5, *г*) σ_{11} изменяются от -355 до -980 МПа, σ_{22} — от -923 до -54 МПа, σ_{12} — от -509 до 242 МПа и σ_i — от 376 до 1250 МПа. В поверхности Π (см. рис. 5, *д*) σ_{11} изменяются от -108 до -514 МПа, σ_{22} — от 162 до -552 МПа, σ_{12} — от 163 до -268 МПа и σ_i — от 362 до 594 МПа.

Диапазон изменения Σ_{σ_i} и средние значения σ_{icp} интенсивности напряжений в объеме A и поверхностях F, B, Γ и \square под действием разных нагрузок приведены в таблице.

Данные таблицы свидетельствуют о высокой неоднородности напряжений в поверхностном слое Si₃N₄-керамики при САО и разном характере влияния нагрузок на напряжения в ее разных фазах. Установлено, что под действием сосредоточенной силы наибольшие значения интенсивности напряжений формируются во внутреннем объеме зерна Si₃N₄-керамики. В поверхностях зерна, межзеренной фазы и матрицы этой керамики напряжения, сформированные действием сосредоточенной силы, меньше в 1,4-2,0 раза. Под действием теплового потока, формирующего на поверхности Si₃N₄-керамики температуру выше 2000 °С, в объеме А и поверхностях Б, В, Г и Д создается напряженное состояние с интенсивностью напряжений в 2-16 раз меньше, чем в случае действия сосредоточенной силы. Более того, тепловая нагрузка оказывает благоприятное влияние на напряженное состояние в объеме А и поверхностях В, Г и Д за счет уменьшения σ_i до трех раз (в поверхности зерна тепловой поток уменьшает о; на 9 %). Однако в поверхности *Б* значения *σ*_{*i*} увеличиваются на 12 %.

Учитывая эти результаты, можно отметить, что локальный участок поверхности Si₃N₄-керамики и разные фазы, образующие ее поверхностный слой, находятся в сложном напряженно-деформированном состоянии под действием силовых, тепловых и комбинированных нагрузок. Во всех этих случаях нагружения локального участка поверхности Si₃N₄-керамики наибольшие напряжения формируются в объеме зерна, что позволяет предположить действие транскристаллитного механизма формирования поверхностного слоя нитридной керамики при САО. Вероятность разрушения поверхностного слоя керамики по межкристаллитному механизму по границам «зерно – межзеренная фаза» или «межзеренная фаза – матрица» под действием этих нагрузок значительно меньше и возможна при наличии структурных дефектов на этой границе. Изменение соотношения этих нагрузок при переходе на другой режим САО будет определен-

Показатели	Объем А			Поверхность Б			Поверхность В			Поверхность Г			Поверхность Д		
	F	Q	F+Q	F	Q	F+Q	F	Q	F+Q	F	Q	F+Q	F	Q	F+Q
Σ_{σ_i}	1640	102	1498	820	173	917	1125	163	363	1145	453	874	480	497	232
σ_{icp}	1095	251	1182	394	277	546	354	458	582	395	454	604	279	300	456

ным образом влиять на напряжения, формирующиеся в зерне, в разных фазах и на их границах в поверхностном слое ${\rm Si}_3{\rm N}_4$ -керамики.

ЗАКЛЮЧЕНИЕ

В результате численных экспериментов выявлено заметное влияние силовых и тепловых воздействий, характерных для САО, на распределение напряжений в разных фазах поверхностного слоя Si₃N₄-керамики. Установлено, что под действием сосредоточенной нагрузки во всех фазах поверхностного слоя формируются наибольшие напряжения, которые несколько уменьшаются

Библиографический список

1. *Kowsari, K.* Erosive smoothing of abrasive slurryjet micro-machined channels in glass, PMMA, and sintered ceramics: experiments and roughness model / *K. Kowsari, J. Schwartzentruber, J. K. Spelta* [et al.] // Precision Engineering. — 2017. — Vol. 49. — P. 332–343.

2. **Кузин, В. В.** Влияние воздушно-абразивной обработки на эксплуатационные характеристики изделий из оксидно-карбидной керамики / В. В. Кузин, Н. Р. Портной, С. Ю. Фёдоров [и др.] // Новые огнеупоры. — 2015. — № 9. — С. 62-67.

Kuzin, V. V. Effect of air-abrasive treatment on oxide-carbide ceramic object operating properties / V. V. *Kuzin, N. R. Portnoi, S. Yu. Fedorov* [et al.] // Refractories and Industrial Ceramics. — 2016. — Vol. 56, \mathbb{N} 5, — P. 517–521.

3. *Srikanth, D. V.* Application of taguchi & response surface methodology in optimization for machining of ceramics with abrasive jet machining / *D. V. Srikanth, M. Sreenivasa Rao* // Materials Today : Proceedings. — 2015. — Vol. 2. — P. 3308–3317.

4. **Кузин, В. В.** Анализ надежности керамических деталей после гидроабразивной обработки / В. В. Кузин, *Н. Р. Портной, С. Ю. Фёдоров* [и др.] // Новые огнеупоры. — 2015. — № 11. — С. 63–68.

Kuzin, V. V. Analysis of the reliability of ceramic parts after hydroabrasive machining / V. V. Kuzin, N. R. Portnoi, S. Yu. Fedorov [et al.] // Refractories and Industrial Ceramics. -2016. - Vol. 56, \mathbb{N} 6. - P. 631–636.

5. *Mohankumar, V.* Review on machining aspects in metal matrix and ceramic matrix composites using abrasive waterjet / *V. Mohankumar* [et al.] // Applied Mechanics and Materials. — 2015. — Vols. 766/767. — P. 643–648.

6. *Wang, J.* The cutting performance in multipass abrasive waterjet machining of industrial ceramics / *J. Wang, D. M. Guo //* Journal of Materials Processing Technology. — 2003. — Vol. 133. — P. 371–377.

7. *Choi, Gi Sang.* Process analysis and monitoring in abrasive water jet machining of alumina ceramics / *Gi Sang Choi, Gi Heung Choi //* International Journal of Machine Tools and Manufacture. — 1997. — Vol. 37. — P. 295–307.

8. **Zeng, Jiyue.** An erosion model for abrasive waterjet milling of polycrystalline ceramics / *Jiyue Zeng, Thomas J. Kim //* Wear. — 1996. — Vol. 199. — P. 275–282.

в случае добавления теплового потока. Полученные результаты позволили предложить комплекс решений по прогнозированию наиболее вероятного механизма разрушения поверхностного слоя Si₃N₄-керамики под действием нагрузок, генерируемых процессом САО. На этой основе сформирован подход к выбору режимов САО при предварительных и финишных проходах, причем контрольные эксперименты подтвердили правильность выбранного направления решения существующей проблемы и получения дополнительного экономического эффекта с улучшением производственной экологии.

9. *Wang, J.* A new model for predicting the depth of cut in abrasive waterjet contouring of alumina ceramics / *J. Wang //* Journal of Materials Processing Technology. — 2009. — Vol. 209. — P. 2314–2320.

10. **Григорьев, С. Н.** Морфология поверхности высокоплотной керамики после гидроабразивной обработки / С. Н. Григорьев, В. В. Кузин, С. Ю. Федоров [и др.] // Новые огнеупоры. — 2015. — № 3. — С. 123–126.

Grigor'ev, S. N. Morphology of the surface of a highdensity ceramic after hydroabrasive machining / S. N. Grigor'ev, V. V. Kuzin, S. Yu. Fedorov [et al.] // Refractories and Industrial Ceramics. — 2015. — Vol. 56, № 2. — P. 164–167.

11. **Григорьев, С. Н.** Модель формирования профиля реза при гидроабразивной обработке высокоплотной керамики / С. Н. Григорьев, В. В. Кузин, С. Ю. Фёдоров [и др.] // Новые огнеупоры. — 2015. — № 1. — С. 51–56.

Grigor'ev, S. N. Model of the formation of the profile of a cut in the hydroabrasive machining of a high-density ceramic / S. N. Grigor'ev, V. V. Kuzin, S. Yu. Fedorov [et al.] // Refractories and Industrial Ceramics. -2015. - Vol. 56, \mathbb{N} 1. - P. 48–53.

12. *Srinivasu, D. S.* Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics / *D. S. Srinivasu, D. A. Axinte, P. H. Shipway* [et al.] // International Journal of Machine Tools and Manufacture. — 2009. — Vol. 49. — P. 1077–1088.

13. **Shanmugam, D. K.** Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique / D. K. Shanmugam, J. Wang, H. Liu // International Journal of Machine Tools and Manufacture. — 2008. — Vol. 48. — P. 1527–1534.

14. *Gudimetla, P.* Kerf formation analysis in the abrasive waterjet cutting of industrial ceramics / *P. Gudimetla, J. Wang, W. Wong //* Journal of Materials Processing Technology. — 2002. — Vol. 128. — P. 123–129.

15. *Paul, S.* Analytical modelling of the total depth of cut in the abrasive water jet machining of polycrystalline brittle material / *S. Paul, A. M. Hoogstrate, C. A. van Luttervelt* [et al.] // Journal of Materials Processing Technology. — 1998. — Vol. 73. — P. 206–212.

16. **Shafiei**, **N.** Computer simulation of developing abrasive jet machined profiles including particle interference / *N. Shafiei*, *H. Getu*, *A. Sadeghian* [et al.] // Journal of Materials Processing Technology. — 2009. — Vol. 209. — P. 4366–4378.

17. *Kumar, Naresh.* Finite element analysis of multiparticle impact on erosion in abrasive water jet machining of titanium alloy / *Naresh Kumar, Mukul Shukla* // Journal of Computational and Applied Mathematics. — 2012. — Vol. 236. — P. 4600–4610.

18. *Liu, Dun.* Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box-Behnken design / *Dun Liu, Chuanzhen Huang, Jun Wang* [et al.] // Ceramics International. — 2014. — Vol. 40. — P. 7899–7908.

19. **Кузин, В. В.** Численное моделирование напряженно-деформированного состояния поверхностного слоя оксидно-карбидной керамики при струйно-абразивной обработке / В. В. Кузин, Е. Д. Коршунова, Н. Р. Портной [и др.] // Новые огнеупоры. — 2015. — № 12. — С. 51–55.

Kuzin, V. V. Numerical modeling of the stressstrained state of a surface layer of oxide-carbide ceramic with jet-abrasive treatment / V. V. Kuzin, E. D. Korshunova, N. R. Portnoi [et al.] // Refractories and Industrial Ceramics. — 2016. — Vol. 56, N $_{\rm e}$ 6. — P. 674–678.

20. **Кузин, В.В.** Анализнапряженно-деформированного состояния поверхностного слоя оксидно-карбидной керамики при струйно-абразивной обработке / В. В. Кузин, С. Ю. Федоров, Н. Р. Портной // Новые огнеупоры. — 2016. — № 2. — С. 56-61.

Kuzin, V. V. Analysis of oxide-carbide ceramic surface layer stress-strained state with jet-abrasive treatment / *V. V. Kuzin, S. Yu. Fedorov, N. R. Portnoi* // Refractories and Industrial Ceramics. — 2016. — Vol. 57, № 1. — P. 98–103.

21. **Портной, Н. Р.** Модель напряженнодеформированного состояния поверхностного слоя керамики при абразивно-струйной обработке / *Н. Р. Портной, В. В. Кузин* // Вестник Станкин. — 2016. — № 1 (36). — С. 59-63.

22. **Кузин, В. В.** Неоднородность напряжений в поверхностном слое керамики под действием внешней нагрузки. Часть 2. Влияние теплового нагружения / В. В. Кузин, С. Н. Григорьев, В. Н. Ермолин // Новые огнеупоры. — 2013. — № 12. — С. 35–39.

Kuzin, V. V. Stress inhomogeneity in a ceramic surface layer under action of an external load. Part 2.

Effect of thermal loading / V. V. Kuzin, S. N. Grigor'ev, V. N. Ermolin // Refractories and Industrial Ceramics. -2014. - Vol. 54, $N \in 6. - P. 497-501$.

23. **Кузин, В. В.** Неоднородность напряжений в поверхностном слое керамики под действием внешней нагрузки. Часть З. Влияние распределенной силовой нагрузки / В. В. Кузин, С. Н. Григорьев, В. Н. Ермолин // Новые огнеупоры. — 2014. — № 1. — С. 42-46.

Kuzin, V. V. Stress inhomogeneity in a ceramic surface layer under action of an external load. Part 3. Effect of a distributed force load / *V. V. Kuzin, S. N. Grigor'ev, V. N. Ermolin //* Refractories and Industrial Ceramics. — 2014. — Vol. 55, № 1. — P. 36–39.

24. **Кузин, В. В.** Микроструктурная модель керамической режущей пластины / *В. В. Кузин* // Вестник машиностроения. — 2011. — № 5. — С. 72-76.

Kuzin, V. V. Microstructural model of ceramic cutting plate / V. V. Kuzin // Russian Engineering Research. -2011. -Vol. 31, No 5. -P. 479-483.

25. **Кузин, В. В.** Математическая модель напряженнодеформированного состояния керамической режущей пластины / В. В. Кузин, В. И. Мяченков // Вестник машиностроения. — 2011. — № 10. — С. 75-80.

Kuzin, V. V. Stress-strain state of ceramic cutting plate / *V. V. Kuzin, V. I. Myachenkov* // Russian Engineering Research. — 2011. — Vol. 31, № 10. — P. 994–1000.

26. **Григорьев, С. Н.** Автоматизированная система термопрочностных расчетов керамических режущих пластин / С. Н. Григорьев, В. И. Мяченков, В. В. Кузин // Вестник машиностроения. — 2011. — № 11. — С. 26-31.

Grigor'ev, S. N. Automated thermal-strength calculations of ceramic cutting plates / *S. N. Grigor'ev, V. I. Myachenkov, V. V. Kuzin //* Russian Engineering Research. — 2011. — Vol. 31, № 11. — P. 1060–1066.

27. *Kuzin, V.* Method of investigation of the stressstrain state of surface layer of machine elements from a sintered nonuniform material / *V. Kuzin, S. Grigoriev* // Applied Mechanics and Materials. — 2014. — Vol. 486. — P. 32–35. ■

> Получено 04.07.18 © В. В. Кузин, М. Ю. Фёдоров, М. А. Волосова, 2018 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

60