Д. т. н. Г. Седмале¹ (^[]), д. т. н. Л. Грасе¹, к. т. н. И. Залите¹, к. т. н. Н. Жилинска¹, Я. Родригес²

> ¹ Рижский технический университет, Институт силикатных материалов, г. Рига, Латвия
> ² Platforma Solarde Almeria, г. Табернас, Испания

УДК 666.762.14+666.762.5].046.4

МИКРОСТРУКТУРА И СВОЙСТВА КОМПОЗИЦИОННОЙ МУЛЛИТ–ZrO₂(Y₂O₃)–Si₃N₄-КЕРАМИКИ, СПЕЧЕННОЙ РАЗЛИЧНЫМИ МЕТОДАМИ

Цель настоящих исследований — изучение уплотнения, фазового состава, микроструктуры и некоторых свойств муллит-ZrO₂-керамики с добавкой Si₃N₄, спеченной различными методами: традиционным, плазменно-искровым, в микроволновой и солнечной печах. Проведено сравнение прочностных свойств (предел прочности при сжатии и модуль упругости) керамических образцов, спеченных традиционным способом и плазменно-искровым. Указаны некоторые причины образования дефектов в образцах после спекания в микроволновой печи и солнечной.

Ключевые слова: муллит–ZrO₂(Y₂O₃)–Si₃N₄-керамика, нанопорошок Si₃N₄, плазменно-искровое спекание (SPS), микроволновая печь (MW), печь с использованием солнечной энергии (SF).

введение

звестно [1], что муллитосодержащая керамика широко применяется в высокотемпературных процессах, в которых необходимо сохранение ее высоких термомеханических свойств. Ряд специфических свойств этой керамики — устойчивость к температурным перепалам. агрессивным химическим средам. в некоторых случаях электрическим характеристикам — улучшают модифицированием состава керамики, чаще всего ZrO₂ (или ZrSiO₄), оксидами магния, лантана [2, 3]. Существенным при синтезе муллитовой керамики является также процесс спекания, который при применении, например, в качестве исходного сырья каолинита может быть ускорен при его термическом разложении с последующим взаимодействием с Al₂O₃ [4]. В последние годы для интенсификации процесса формирования муллита применяют альтернативные методы спекания, сокращающие длительность его синтеза при одновременном уплотнении исходного порошка и обеспечении образования муллитовой кристаллической фазы. В этих случаях используют горячее прессование, спекание в микроволновой печи (MW) и в печи с использованием солнечной энергии (SF), а также плазменно-искровое спекание (Spark Plazma Sintering — SPS).

> ⊠ Г. Седмале E-mail: gaida-maruta.sedmale@rtu.lv

При микроволновом спекании [5-7] происходит перенос тепла в объеме материала при воздействии электромагнитных волн. При этом в композициях муллит-ZrO₂ обеспечиваются более высокое уплотнение и более полная стабилизация тетрагонального ZrO₂, чем при традиционном спекании. В свою очередь, в солнечной печи необходимая температура достигается за очень короткий промежуток времени [8, 9]. Несмотря на дороговизну солнечных печей, следует отметить, однако, некоторые положительные аспекты использования этого вида спекания: солнечная энергия является неисчерпаемым источником и весьма высокая стоимость солнечной печи в среднем быстро окупается. Поэтому этот способ обеспечивает получение более уплотненных керамических материалов с характерной микроструктурой и тем самым позволяет варьировать их свойства.

Цель настоящей работы — исследование процесса спекания, влияющего на формирование микроструктуры, состава кристаллической фазы и некоторых свойств муллит-ZrO₂(Y₂O₃)-Si₃N₄-керамики, спеченной в процессе SPS, в MW и в SF. Полученные данные сравнили с аналогичными показателями керамических образцов, спеченных традиционным способом.

МЕТОДЫ ИССЛЕДОВАНИЯ

Исходную смесь композиции муллит– ZrO₂(Y₂O₃)–Si₃N₄ готовили из химически чистых оксидов γ -Al₂O₃, ZrO_{2 мон}, Y₂O₃ (фирмы Nabaltec) и Si₃N₄ (α - и β - формы ~ 1 : 1); SiO₂ вводили в

Таблица 1 Сос	тав исхолной	смеси комг	IOSHTOR. M	ac. %
таолица т. сос	лав исходной	спеси кон	10391106, 14	ac. /0

Обозначе- ние состава	γ-Al ₂ O ₃	Кварцевый песок (SiO ₂ 98,7 %)	ZrO _{2 мон}	Y ₂ O ₃	Si ₃ N ₄
MN0					0
MN1	62,30-59,20	28,42–27,05	5,20-4,90	4,50–4,25	1
MN5					5

виде очищенного кварцевого песка (SiO₂ 98,7 %, Al₂O₃ 1,3 %). Состав исходной смеси приведен в табл. 1. Полученную смесь подвергали гомогенизации и помолу в планетарной лабораторной мельнице Retsch PM-100 в течение 10 ч в среде этилового спирта с последующим определением дисперсности методом адсорбции азота (БЭТ) на приборе Nova 1200е. Удельная поверхность порошка без добавки и с добавкой 5 % Si₃N₄ составляла соответственно 27,85 и 52,50 м²/г, нанопорошка Si₃N₄ 85,25 м²/г. Поведение порошка при нагреве до 1500 °C оценивали по данным дифференциально-термического анализа (ДТА) на приборе Setaram, Setsys Evolution 1750 в атмосфере гелия. Из порошка на гидравлическом прессе Атлас (Atlas Power Hydraulic Press) прессовали образцы в виде цилиндров высотой 30-35 и диаметром 30 мм для определения предела прочности при сжатии и стержней длиной 50 мм с площадью поперечного сечения 14-16 мм² для определения модуля упругости и термостойкости. Таким образом, образцы в виде цилиндров и стержней изготовляли для спекания традиционным способом и в микроволновой печи. Для спекания в солнечной печи изготовляли только

Рис. 1. Кривые нагрева образцов при спекании в SF, MW, традиционным способом (*a*) и SPS (б)

диски диаметром около 25 и толщиной около 2,5 мм. Образцы, получаемые SPS, формировали из порошка непосредственно в печи.

Реактивный синтез (спекание) традиционным способом проводили в печи Nabertherm-3000 в атмосфере азота при максимальной температуре 1400 °С со скоростью ее подъема 6 °С/мин и выдержкой 2 ч, нетрадиционным (SPS) — с использованием устройства Sumimoto модели SPS-825. СЕ (Dr. Sinter, Япония) при максимальной температуре 1400 °C. В данном случае образцы формировались в графитовых формах при давлении 3 кг/см² в вакууме в интервале 500–1400 °C. Вакуум поддерживали постоянным — около 6 Па. Микроволновое спекание проводили в лабораторной печи МНТD-1800-2.45/4.82 со скоростью подъема температуры 7 °С/мин и выдержкой 2 ч. Спекание в солнечной печи, однако, не поддавалось строгому контролю. В использованной солнечной печи SF 40, спроектированной в Испании (Platforma Solarde Almeria), солнечный поток концентрировался только на небольшой площади. Поэтому пока достигалась максимальная и равномерная температура по всему объему образцов, в них, видимо, образовывались напряжения, которые в процессе охлаждения обусловливали растрескивание образцов или даже их разрушение. Кривые нагрева образцов при разном виде спекания показаны на рис. 1.

Степень спекания (уплотнение, %) оценивали по изменению относительной плотности согласно соотношению d_1/d_0 по данным плотности, определенной по закону Архимеда; плотность спеченного керамического образца сравнивали с теоретически возможной рассчитанной плотностью (3,35 г/см³) исследуемого состава. Плотность и полную усадку спеченных образцов определяли по EN LVS 63-01: 2001, предел прочности при сжатии — на трех параллельно измеренных образцах по LVS EN 14617 на приборе Toni Technic модели 2020, термостойкость — согласно ASTM С1525 по изменению модуля упругости в процессе термоциклирования образца (1000 °С – вода) и с учетом ASTM E1876-01 с применением устройства Buzz-o-Sonic (BuzzMac International, США) с последующим расчетом [10], микроструктуру и фазовый состав анализировали на сканирующем электронном микроскопе (СЭМ) модели Nova NanoSEM 650, Нидерланды, и дифрактометре модели D8 Advance (Bruker) с Си K_a-излучением, интервалом сканирования $2\theta = 10 \div 60$ град при скорости 4 град/мин.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Характеристика и поведение исходного порошка при традиционном спекании

После гомогенизации и помола исходная смесь порошка представляла собой агломераты, образованные из слабо связанных частиц (рис. 2). С до-

50

бавкой нанопорошка Si₃N₄ агломерация, видимо, усиливалась и образовавшиеся агломераты имели более четкую поверхность раздела. Светлые раздельные точки вне агломератов, по всей вероятности, представляли собой ZrO₂ (см. рис. 2).

Ход кривых ДТА и ТГ (рис. 3) показывает, что основными процессами при нагревании при традиционном методе спекания являются разложение и превращение первоначальных компонентов до температуры примерно 1200 °С, при которой образуется некоторое количество жицкой фазы, сопровождающей начало кристаллизации. Четко выраженный эндотермический эффект при начальных температурах нагрева ниже 200 °С обусловлен выделением гигроскопической влаги с поверхности частиц порошка. Неясно выраженный экзотермический эффект в интервале 900-950 °C обусловлен, видимо, началом кристаллизации муллита. Как видно, ход кривых ДТА исходного порошка с добавкой 5 % Si₃N₄ и без нее аналогичны. Различие в том, что добавка

5 % Si_3N_4 влечет за собой повышение температуры кристаллизации и изменяет ход кривой $T\Gamma$, обусловленные в основном разложением Si_3N_4 .

Уплотнение образцов в процессе спекания

Процесс спекания, сопровождаемый усадкой и уплотнением образцов при разных газовых средах и временно-температурных условиях в печи различается. На рис. 4 показано изменение линейной усадки образцов в процессе их получения SPS и спеканием в MW в сравнении с традиционным способом. У образцов, спеченных с использованием солнечной энергии, ввиду растрескивания измерить усадку не представлялось возможным. Спекание сопровождается весьма значительной усадкой со склонностью к снижению в образцах с добавкой Si₃N₄ при MW-спекании и традиционном. В то же время уплотнение образцов с добавкой Si₃N₄ мало изменяется, за исключением образцов, спеченных с использованием солнечной энергии (рис. 5). По всей вероятности, неравномерный в

Рис. 2. СЭМ-изображения исходного порошка без добавки нанопорошка Si₃N₄ (*a*), с добавкой нанопорошка 1 (*б*) и 5 % (*в*); *г* — СЭМ-изображение нанопорошка Si₃N₄

Рис. 3. Кривые ДТА и ТТ исходных порошков без добавки (*a*) и с добавкой 5 % Si₃N₄ (*б*)

Рис. 5. Уплотнение керамических образцов при 1400 °С, спеченных традиционным способом, SPS, в MW и SF

объеме образца и быстрый подъем температуры в SF влечет за собой не только появление трещин, но и образование замкнутых пор. Максимально возможное спекание достигается только по методу SPS. Этот метод, обеспечивая одновременно воздействие высокой температуры в условиях вакуума и давления на порошковый образец, значительно ускоряет диффузию частиц и тем самым процессы спекания и уплотнения, максимально исключая образование каких-либо дефектов.

Механические и термические свойства

В связи с этим закономерно изменяются и механические свойства. На рис. 6 показано изменение модуля упругости керамических образцов, полученных SPS и традиционным спеканием, в зависимости от содержания в них добавки Si₃N₄. Согласно стандарту [11], эти данные фактически показывают изменение не только модуля упругости, но и устойчивости материала к резким термоударам. Как видно из рис. 6, значения *E*_{упр} различаются не только у керамических образцов, не подвергнутых термоудару, но и после первого термического цикла, снижаясь почти на 50 %, как у образцов с добавкой Si₃N₄, полученных SPS и традиционным спеканием. Однако у керамиче-

Таблица 2. Прочность керамических образцов, полученных традиционным спеканием, SPS и в MW

Состав (см. табл. 1)	Предел прочности при сжатии, МПа, в зависимости от способа спекания образца			
	Трад	SPS	MW	
MN0	195	460	405	
MN1	160	475	401	
MN5	98	598	395	

ских образцов, полученных SPS, с ростом циклов термических ударов, особенно у образцов без добавки, значения Еупр не снижаются примерно более чем на 30 %, что позволяет отнести эти керамические образцы к термостойким. Следует отметить, что снижение модуля упругости после первого цикла термического удара и последующее его возрастание у образцов, полученных SPS, возникают из-за образования в них внутренних дефектов, по всей вероятности микротрещин, которые после второго-третьего цикла самозалечиваются при появлении некоторого количества жидкой фазы при нагреве. У традиционно спеченных образцов стремительный спад модуля упругости уже при первом термическом цикле обусловлен, видимо, присутствием замкнутых пор, образовавшихся в процессе спекания при разложении Si₃N₄.

С этими результатами и по приведенным значениям уплотнения спеченных образцов коррелируют данные о пределе прочности при сжатии (табл. 2), которые имеют относительно высокие значения как у образцов, полученных SPS, так и в MW, но значительно ниже, чем у образцов, традиционно спеченных.

Фазовый состав и микроструктура

В процессе спекания сформировавшаяся структура керамических образцов представлена доминирующей кристаллической фазой — мулли-

Рис. 6. Изменения модуля упругости *E*_{упр} керамических образцов, полученных SPS (*a*) и традиционным спеканием (*б*), в зависимости от циклов термических ударов

52

НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

том со средним размером кристаллов 50-80 нм. Рентгенограммы керамических образцов всех использованных видов спекания схожи, поэтому на рис. 7 показаны рентгенограммы только образцов, полученных традиционным спеканием и SPS; основные различия заключаются в образовавшейся кристаллической модификации ZrO₂. В образцах, спеченных SPS (см. рис. 7, б), образуются три основные модификации оксида циркония: ZrO_{2 тетр}, ZrO_{2 куб} и в качестве примесей ZrO_{2 мон}, интенсивность кристаллизации которых, судя по интенсивности сравниваемых рефлексов, меняется в зависимости от содержания добавки Si₃N₄. В то же время в процессе традиционного спекания доминируют ZrO_{2 куб}, примеси циркона $ZrSiO_4$ и корунда α -Al₂O₃.

СЭМ-микрофотографии керамических образцов, спеченных при использовании всех вышеупомянутых видов спекания, характеризуются присутствием плотноупакованных характерных призматических образований муллита. Однако у керамики, полученной традиционным спеканием и особенно SPS (рис. 8), наблюдаются некоторое отклонение от характерных для муллита призматических форм и наличие «пустот» (или замкнутых пор), в которых можно наблюдать вторичные кристаллические образования муллита. В целом микроструктура SPS-образцов более плотная, однако с добавкой

Рис. 7. Рентгенограммы образцов, полученных при 1400 °С традиционным спеканием (*a*) и SPS (б): о — муллит; х — ZrO_{2 куб}; V — циркон; ^ — корунд; + — ZrO_{2 тетр}; = — ZrO_{2 мон}

Рис. 8. СЭМ-микрофотографии керамических образцов разных составов (см. табл. 2), полученных при 1400 °С традиционным спеканием (*I*) и SPS (*II*)

 Si_3N_4 образуются разреженные мелкие поры. Можно идентифицировать также отдельные зерна, по всей вероятности $ZrO_{2 \text{ тетр}}$.

ЗАКЛЮЧЕНИЕ

Приведены результаты исследований уплотнения, фазового состава, микроструктуры и некоторых свойств муллит– ZrO_2 -керамики с добавкой Si_3N_4 , полученной традиционным спеканием, SPS, в микроволновой печи и в печи с использованием солнечной энергии. Установлено, что почти 100 %-ное уплотнение керамического образца достигается только при SPS. В керамических образцах, спеченных в микроволновой печи и традиционным способом, уплотнение уменьшается соответственно до менее 90 и 80 %. Ввиду образования дефектов в образцах, спеченных в солнечной печи, степень уплотне-

ния образцов с добавкой Si₃N₄ резко снижается от 90 до ниже 70 % при введении 5 % Si₃N₄. Соответственно, со степенью уплотнения коррелируют показатели предела прочности при сжатии: от 598 МПа у образцов, полученных SPS, до 395 МПа и 98 для микроволнового и традиционного спекания соответственно. Модули упругости керамических образцов, полученных традиционным спеканием и SPS, имеют относительно высокие значения — соответственно 140 и 180 ГПа. После термоударов у традиционно спеченных образцов значения модуля упругости уменьшаются и приближаются к нулю. У керамических образцов, полученных SPS, с увеличением циклов термических ударов, и особенно у образцов без добавки Si₃N₄, значения модуля упругости не снижаются более чем примерно на 30 %, что позволяет отнести эти керамические образцы к термостойким.

Микроструктура керамических образцов, спеченных традиционным способом, в процессе реактивного синтеза SPS и с использованием микроволнового спекания и солнечной энергии характеризуется присутствием характерных призматических или псевдопризматических

Библиографический список

1. *Malki, M.* Electrical conductivity of mullite ceramics / *M. Malki, C. M. Hoo, M. L. Mecartery, H. Schneider* // J. Am. Ceram. Soc. — 2014. — Vol. 97. — P. 1923–1930.

2. **Rendtorff, N.** Mullitezirconia-zirconcomposites: Properties and thermal shock resistance / N. Rendtorff, L. Garrido, E. Aglietti // Ceram. Int. -2008. - Vol. 35, No 2. - P. 779–786. https://doi.org/10.1016/j. ceramint.2008.02.0/.

3. **Das**, **K**. Microstructural and mechanical properties of reaction sintered mullite-zirconia composites with magnesia as additive / K. Das, S. K. Das, B. Mukherjee, G. Barnerjee // Interceram. $-1998. - N \le 5. - P. 304-616.$

4. **Pereira, D.** Sintering of mullite by different methods / D. Pereira, G. R. S. Biasibetti , R. V. Camerini, A. S. Pereira // Materials and Manufacturing Processes. -2014. - Vol. 29, $\mathbb{N} 4$. - P. 391–396. https://doi.org/10.1080/10426 914.2013.864400.

5. **Hsien-Nan, Kuo.** Microstructure and mechanical properties of microwave sintered ZrO₂ bioceramics with TiO₂ addition / *Kuo Hsien-Nan, Chou Jyh-Horng, Liu Tung-Kuan //* Applied Bionics and Biomechanics. — 2016. — Vol. 2016. — Article ID 2458685. — 7 p. http://dx.doi. org/10.1155/2016/2458685.

6. **Bodhak, S.** Densification study and mechanical properties of microwave-sintered mullite and mullite-zirconia composites / S. Bodhak, S. Bose, A.

образований муллита, плотноупакованных особенно при SPS. В традиционно спеченной керамике и в керамике, спеченной другими способами, наблюдается образование пустот (замкнутых пор), в которых реализуется вторичная кристаллизация. Спекание с использованием солнечной энергии на данном этапе исследований не дало положительных результатов, поскольку необходимы оптимизация размеров исходных образцов и отработка режима спекания для данного вида керамики.

* * *

Работа выполнена благодаря финансированию Европейского фонда регионального развития в рамках проекта 1.1.1.1/16/А/077 «Применение минеральных и синтетических нанопорошков для разработки пористой керамики и модифицирования керамических материалов» («Mineral and synthetic nano powders for obtaining porous ceramics and modification of ceramic materials») и «Разработка муллито-циркониевых огнеупорных материалов при использовании солнечной энергии» в рамках проекта SFERA PROJECT 2017 (Mullite-zirconia refractory materials development by solar furnace sintering, 2017).

Bandyopadhyay // J. Am. Ceram. Soc. — 2011. — Vol. 94, № 1. — P. 32–41. doi: 10.1111/j.1551-2916.2010.04062.x.

7. **Souto, P. M.** High-temperature diametral compression strength of microwave-sintered mullite / *P. M. Souto, M. A. Camerucci, A. G. T. Martinez, R. H. G. A. Kiminami //* J. Eur. Ceram. Soc. — 2011. — № 31. — P. 2819–2826. doi:10.1016/j.jeurceramsoc.2011.07.034.

8. *Zhilinska, N.* Sintering of nanodisperse powders in a solar furnace / *N. Zhilinska, I. Zalite, J. Rodriguez* [et al.] // Eur. Powder Met. Conf. 2003 (EuroPM 2003), Valencia, 2003. — P. 423–428.

9. *Roman, R.* Solar sintering of alumina ceramics: microstructural development / *R. Roman, I. Canadas, J. Rodriguez* [et al.] // Solar Energy. — 2008. — Vol. 82. — P. 893–902. doi: 10.1016/j.solener.2008.04.002.

10. **Седмале, Г.** Характеристика муллит-ZrO₂/Y₂O₃-SiAlON-керамики в процессе спекания искрового разряда / Г. Седмале, М. Рунданс, И. Шперберга [и др.] // Новые огнеупоры. — 2016. — № 3. — С. 134–139.

Sedmale, G. Ceramic of the mullite–ZrO₂/Y₂O₃–SiAlON system during spark plasma sintering / *G. Sedmale, M. Rundans, I. Sperberga* [et al.] // Refractories and Industrial Ceramics. — 2016. — Vol. 57, № 2. — P. 146–150.

Получено 13.02.18 © Г. Седмале, Л. Грасе, И. Залите, Н. Жилинска, Я. Родригес, 2018 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

54

61-й МЕЖДУНАРОДНЫЙ КОЛЛОКВИУМ ПО ОГНЕУПОРАМ 26–27 сентября 2018 г. EUROGRESS, г. Аахен, Германия

ecref.eu