М. А. Трофимович¹ (⊠), А. А. Галигузов^{1,2}, к. т. н. А. П. Малахо^{1,2}, д. т. н. В. В. Авдеев¹

¹ ФГБОУ ВПО «Московский государственный университет имени М. В. Ломоносова», Москва, Россия

² ЗАО «Институт новых углеродных материалов и технологий», Москва, Россия

удк 662.749.39 ВЛИЯНИЕ ДАВЛЕНИЯ НА КАРБОНИЗАЦИЮ КАМЕННОУГОЛЬНОГО ПЕКА РАЗЛИЧНОГО СОСТАВА

Проведены исследования влияния давления карбонизации каменноугольных пеков различного состава на свойства продуктов пиролиза. Целью работы были оценка динамики и маршрутов образования основных продуктов пиролиза каменноугольных пеков под давлением и определение свойств продуктов пиролиза. Было установлено, что при увеличении начального давления карбонизации происходит увеличение выхода коксового остатка на 88,5 и 7,7 % для низкотемпературного и высокотемпературного пеков соответственно. Показано влияние α-фракции на микроструктуру конечного продукта. При увеличении содержания α-фракции в 3,7 раза выход коксового остатка увеличивается на 88,5, 60 и 55 % для начального давления 21, 11 и 1 бар соответственно. Было выявлено, что при повышении начального избыточного давления содержание мезофазы увеличивается приблизительно в 7 раз. Повышение давления увеличивает содержание первичных продуктов и способствует образованию новых соединений в продуктах пиролиза.

Ключевые слова: каменноугольный пек, карбонизация, коксовый остаток, микроструктура.

ВВЕДЕНИЕ

Каменноугольный пек представляет собой сложную гетерогенную систему высококонденсированных карбо- и гетероциклических соединений и продуктов их уплотнения, различающихся степенью ароматичности, составом, свойствами и молекулярной структурой [1]. В настоящее время каменноугольный пек широко используется в различных отраслях промышленности: электродной, авиакосмической, ядерной, химической и применяется в качестве как связующего, так и импрегната, в связи с чем основными характеристиками пека являются высокий коксовый остаток. сочетание коксообразующей способности и низкой вязкости. Последний показатель является определяющим при уплотнении углеродистых полуфабрикатов электродного и авиакосмического назначения. При этом для достижения высокой плотности используется до 4 циклов пропитка – вторичный обжиг, а также пропитка – карбонизация под давлением.

Основными факторами, которые оказывают влияние на свойства конечных продуктов карбонизации, являются параметры температурного режима, давление и внешние факторы среды. Перечисленные факторы оказывают влияние на выход коксового остатка. Согласно литературным данным [2], выход кокса из рядового каменноугольного пека при атмосферном давлении

> ⊠ M. A. Трофимович E-mail: faust-arp@ya.ru

составляет около 50 %. В процессе карбонизации при давлении 10 МПа выход кокса возрастает до 90 %, увеличение давления свыше 10 МПа не оказывает заметного влияния на выход коксового остатка [3, 4]. Давление также влияет на микроструктуру продуктов коксования и полукоксования: при низком давлении образуется кокс игольчатой структуры, при высоком давлении микроструктура кокса выглядит более грубой и изотропной [3, 5]. Согласно публикациям [6, 7], скорость выделения летучих продуктов при больших скоростях нагрева практически не оказывает влияния на выход и состав продуктов разложения. При этом выход и состав продуктов зависят в основном от конечной температуры. Скорость нагрева при пиролизе также влияет на микроструктуру кокса. Установлено [8], что повышение скорости нагрева способствует образованию больших мозаичных единиц в микроструктуре.

В настоящей статье представлены результаты исследования влияния давления карбонизации каменноугольных пеков различного состава в широком интервале свойств на характеристики продуктов пиролиза, в том числе на выход коксового остатка, микроструктуру и состав продуктов пиролиза. Предпринята оценка динамики и маршрутов образования основных продуктов пиролиза.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных пеков были использованы каменноугольные пеки, предоставленные компанией «Rutgers Aromatics GmbH» (Германия), с различной температурой размягчения: низкотемпературный (СТ), среднетемпературные (СF, BX) и высокотемпературные (НР, СР) пеки (табл. 1).

Термический анализ был проведен на термовесах «NETZSCH TG 209 F3 Tarsus» в платиновых тиглях без крышки в динамической атмосфере аргона: 120 мл/мин, навеска около 10 мг, скорость нагрева 10 К/мин, интервал температур 40-950 °C. Результаты термического анализа представлены в табл. 1 и на рис. 1.

Рис. 1. Термогравиметрические (*a*) и дифференциальнотермогравиметрические (*б*) кривые исходных пеков: 1 — СТ; 2 — ВХ; 3 — СF; 4 — НР; 5 — СР

Для проведения карбонизации образцы пека помещали в реактор высокого давления, предварительно установленный в муфельную печь (рис. 2). Были выбраны следующие условия эксперимента: скорость нагрева 5 °С/мин; конечная температура в реакционной зоне 400, 520 и 600 °С; изотермическая выдержка 220 мин; начальное давление 0, 1 и 2 МПа.

Для исследования микроструктуры полученных коксов из образцов были подготовлены микрошлифы и проведена оценка микроструктуры (балльности) согласно ГОСТ 26132.

Для оценки динамики и возможных маршрутов пиролиза образцы пеков карбонизовали при различных конечных температурах (400, 520 и 600 °C). Затем твердые продукты пиролиза измельчали и кипятили в ацетоне для экстракции

Рис. 2. Схема установки карбонизации пека под давлением

Таблица 1. Характеристики исходных каменноугольных пеко

Показатели		Каменноугольный пек				
		BX	CF	HP	CP	
Температура размягчения T _p (по методу «кольца и шара»), °С (ГОСТ 9950, п. 5)	<25	118,3	102,6	164,2	>160	
Количество веществ, нерастворимых в хинолине (фракция α ₁), мас. % (ГОСТ 10200, п. 4.4.1)	2,0	4,6	8,0	36,9	11,1	
Количество веществ, нерастворимых в толуоле (фракция α ₂), мас. % (ГОСТ 7847)	21,3	30,3	51,4	51,0	78,8	
Выход летучих веществ V, мас. % (ГОСТ 9951)	73,3	56,9	46,6	35,6	28,7	
Коксовый остаток CV, мас. % (DIN 51905)	30,8	60,5	61,0	80,1	84,0	
Элементный анализ						
Н/С, ат. доли	0,78	0,66	0,65	0,55	0,53	
Термический анализ						
Tonset, °C	143,0	195,0	149,0	268,0	274,0	
$T_{\max}(1)$, °C	196,8	336,9	253,1	455,0	447,8	
$T_{\max}(2)$, °C	471,9	-	458,0	-	-	
Tendset, °C	586,5	565,8	576,7	577,1	559,1	
$\Delta m, \%$	79,94	67,17	55,08	49,89	43,82	
* Температура: <i>T</i> _{onset} — начала потери массы, <i>T</i> _{max} (1) — первого максимума разложения, <i>T</i> _{max} (2) — второго максимума разложения, <i>T</i> _{endset} — окончания разложения.						

фракции, растворимой в ацетоне. Хромато-массспектрометрическому анализу были подвергнуты растворимые в ацетоне фракции как исходных пеков, так и продуктов пиролиза.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Базовые характеристики исходных связующих представлены в табл. 1. Базовые характеристики исходных пеков определяли с целью установления различия в поведении при карбонизации. При повышении температуры размягчения увеличивается содержание α-фракции (веществ, нерастворимых в хинолине и толуоле), что согласуется с литературными данными [1]. Это связано с особенностями получения рассматриваемых пеков. При переходе от низкотемпературного пека (НТП) к высокотемпературному пеку (ВТП) увеличивается степень его ароматичности, что также связано с увеличением содержания α-фракции. Таким образом, исходные пеки можно расположить в порядке возрастания степени ароматичности и, следовательно, средней молекулярной массы следующим образом: CT < BX < CF < HP < CP.

Степень ароматичности прямым образом связана с выходом коксового остатка и летучих веществ: чем более ароматичной структурой обладает пек, тем выше коксовый остаток и, соответственно, меньше выход летучих веществ. Тенденция подтверждается полученными данными. Такая зависимость наблюдается вследствие того, что полиароматические углеводороды (ПАУ) с высокой степенью ароматичности характеризуются высокой температурой кипения. Они находятся в системе при карбонизации в исходном состоянии до 500-600 °С (табл. 2). При повышении температуры пиролиза ПАУ подвергаются дегидрированию и участвуют в процессе формирования углеродной структуры. Полиароматические углеводороды с низкой степенью ароматичности удаляются из исходного пека в диапазоне 200-400 °С (табл. 2). Они формируют радикалы и рекомбинируют между собой и с другими радикалами, тем самым повышая степень ароматичности в процессе нагрева.

Термогравиметрические и дифференциальные термогравиметрические кривые исходных пеков представлены на рис. 1, значения коксового остатка и максимумы ДТГ-кривых, а также температуры начала разложения — в табл. 1.

Таблица 2. Температур	а кипения	некоторых	ПАУ
-----------------------	-----------	-----------	-----

•			
Соединение	<i>Т</i> _{кип} , °С	Соединение	<i>Т</i> _{кип} , °С
Нафталин	217	Антрацен	343
Метилнафталины	245 ± 5	Дибензантрацен	512
Диметилнафталины	272 ± 10	Бензапирен	515
Аценафтен	279		520
Флуорен	294	Пентацен	530
Фенантрен	340	Дибензапирен	562

Пек ВХ содержит значительное количество летучих компонентов, которые удаляются при низких температурах, поэтому остаток после его карбонизации составляет 33 %. Масса остатка при этом прямо пропорциональна температуре максимума скорости потери массы. Процессы удаления летучих продуктов и карбонизации идут параллельно, и суммарный процесс брутто-одностадиен, выделить стадии удаления летучих компонентов и карбонизации не удается.

Пеки СР и НР содержат значительно меньше летучих компонентов, и температура их кипения выше. Поэтому максимум потери массы приходится на более высокие температуры (около 450 °C) и коксовый остаток превышает 50 %. Пек СР содержит меньше летучих компонентов, поскольку начало потери массы его соответствует более высокой температуре, чем для остальных пеков, а коксовый остаток выше. Процессы удаления летучих продуктов и карбонизации для этих двух пеков идут параллельно, и суммарный процесс брутто-одностадиен. Как и для ВХ, выделить стадии удаления летучих компонентов и карбонизации не удается.

Для пека CF можно выделить отдельные стадии удаления летучих продуктов, при этом наложение стадий карбонизации и испарения не так велико. Кроме того, на ДТГ-кривой наблюдается узкий пик, который, очевидно, соответствует испарению специфического индивидуального соединения, предположительно нафталина (температура максимума соответствует температуре его кипения). Сходство этого пека по поведению и термоаналитическим характеристикам с двумя предыдущими заключается в том, что коксовый остаток превышает 40 %, а максимум последнего ДТГ-пика, соответствующего суперпозиции процессов карбонизации и удаления остатков летучих соединений, превышает 450 °С.

Пек СТ по своему поведению похож на СF: стадии выделения летучих и карбонизации различимы, на ДТГ-кривой наблюдается узкий пик, соответствующий, вероятно, выделению нафталина. Коксовый остаток составляет 20 %. Это связано с тем, что у данного пека высокое содержание летучих. Максимум последнего пика, как и у трех предыдущих пиков, превышает 450 °C.

Проведение карбонизации под давлением приводит к значительному увеличению выхода коксового остатка для всех пеков (табл. 3). В табл. 3 приведены данные для избыточных давлений. Фактические значения давления составляют 0,1, 1,1 и 2,1 МПа соответственно.

Дополнительно был проведен анализ влияния скорости подъема температуры при пиролизе на выход коксового остатка. При увеличении скорости нагрева от 5 до 30 °С/мин величина коксового остатка изменялась незначительно (на 0,2 %). Во всех случаях увеличение коксового остатка при создании давления происходит вследствие того, что температуры кипения летучих компонентов смещаются в сторону более высоких температур, при этом расчетные температуры кипения при заданном давлении выше температур начала реакций полимеризации. Изменение температуры кипения некоторых ПАУ в зависимости от давления представлено на рис. 3.

Приведенный тезис согласуется с литературными данными [9], согласно которым при карбонизации антрацена (*Т*_{кип} = 343 °C) под давлением 300 МПа не происходит испарение соединения, а протекают реакции с разрушением ароматических колец с образованием алифатических продуктов состава С_хН_ν, фенил- и метил-радикалов и реакции конденсации антрил-, нафтил-, фенил- и метил-радикалов до образования непрерывно растущих молекул большого размера. В продуктах пиролиза антрацена под давлением идентифицировано около 30 молекул с интенсивностью, значительно превышающей интенсивность соединений, идентифицированных в чистом антрацене. При карбонизации соединений с меньшей температурой кипения под давлением, например дифенила (*T*_{кип} = 255 °C), также происходит смещение температуры кипения в область больших температур. При этом при 460 °С преобладает реакция димеризации. При 602 °С протекают реакции деструкции с разрушением ароматического кольца с образованием антрацена, нафталина, метил- и фенил-производных, а также дифенил-, трифенил-, тетрафенил- и пентафенил-радикалов.

Интерпретация процесса пиролиза каменноугольных пеков под давлением более сложная задача ввиду сложного состава как исходного пека, так и продуктов карбонизации. Однако наблюдается общая тенденция: при пиролизе пеков под давлением индивидуальные вещества находятся в системе в исходном состоянии. При достижении температуры кипения давление в системе заметно возрастает как вследствие перехода индивидуальных легколетучих ПАУ из жидкой фазы в газовую, так и в результате изохорного расширения образовавшихся продуктов испарения. Происходит частичная конденсация легколетучих компонентов, которые также участвуют в процессе карбонизации. При повышении температуры происходят реакции, включающие процессы деструкции-конденсации с образованием многокольчатых молекул, наличие которых увеличивает коксовый остаток.

Как видно из приведенных данных, значительное увеличение коксового остатка наблюдается для низкотемпературного и среднетемпературных пеков (см. табл. 1 и 3), что связано с высоким содержанием легколетучих компонентов; высокотемпературные пеки характеризуются низким содержанием легколетучих компонентов и высоким содержанием многокольчатых ароматических соединений, которые обуславли-

Рис. 3. Номограммы кипения нафталина (1), флуорена (2) и антрацена (3) в зависимости от внешнего давления

вают высокое значение коксового остатка и при карбонизации без давления.

Также, согласно полученным результатам, при увеличении давления до 2,0 МПа происходит незначительное увеличение выхода коксового остатка в особенности для высокотемпературных пеков, что согласуется с литературными данными [10]. На рис. 4 представлены зависимости давления летучих веществ, образующихся при пиролизе каменноугольных пеков разных марок, от температуры при различном начальном избыточном давлении.

Для пеков СТ и СF при начальном избыточном давлении 0 и 1,0 МПа наблюдаются характерные области, отвечающие эндотермическим эффектам. Эффекты связаны с процессами конденсации. Такой вывод можно сделать на основании того, что в наблюдаемом интервале происходит снижение температуры, а давление остается постоянным (см. рис. 4, 5).

Вещества, нерастворимые в хинолине (частички угля и коксовая пыль, α₁-фракция) и толуоле (ПАУ с большим числом конденсированных колец, α₂-фракция), составляют α-фракцию; α₁-фракция не претерпевает значительных изменений в процессе карбонизации. С повышением температуры обработки α₂-фракция претерпевает изменения, связанные с процессами поликонденсации и дегидрирования, что в конечном итоге приводит к

Таблица	3. Выход	коксового	остатка	при	различ-
ных нач	альных д	авлениях,	мас.%		

Пот	Без давления в восстано-	При нач карбо	$\Delta M_{\rm CV}({ m max})^*,$			
вительной атмосфере	0	1,0	2,0	абс. %		
CT	30,8	48,9	56,3	58,1	27,3	
BX	60,5	83,4	83,9	84,1	23,5	
CF	61,0	81,1	82,9	84,5	23,5	
HP	80,1	88,4	89,7	90,4	10,3	
CP	84,0	89,4	90,1	90,4	6,4	
* Абсолютное увеличение коксового остатка при макси-						
мальном начальном избыточном давлении относительно						
коксового остатка в восстановительной атмосфере при						
отсутствии давления.						

образованию вторичной α₁-фракции. Таким образом, при увеличении содержания α-фракции возрастает выход коксового остатка.

В табл. 4 представлены результаты анализа микроструктуры продуктов полукоксования и коксования. Было установлено, что все образцы содержат углеродсодержащие частицы, входящие в состав нерастворимой в хинолине фракции (см. табл. 1). Их количество влияет следующим образом на структуру образующегося кокса: первичная α₁-фракция вступает в контакт с растущими сферами мезофазы, она обладает адгезией к поверхности мезофазных сфер, тем самым подавляя их дальнейший рост. При высоком содержании α1-фракции рост сфер мезофазы прекращается на начальных стадиях, в результате чего образуется структура, близкая к сферолитовой, содержащая в основном сферы небольшого диаметра, небольшие коалесцированные частицы неправильной формы и изотропный маточный раствор. При низком содержании а1-фракции их наличие не препятствует росту сфер мезофазы, образуется структура, содержащая сферы большого диаметра, частицы неправильной формы и остаточное количество маточного раствора.

Рассматриваемые пеки в порядке увеличения содержания первичной α₁-фракции можно расположить следующим образом: CT < BX < CF < CP < HP. Уменьшение анизотропности коксов указанных пеков будет наблюдаться в том же порядке.

300 350 400 450 500 550 600 650 700 750 800 850 900 *T,* K

Рис. 4. Зависимость давления летучих веществ P_V от температуры *T* при начальном избыточном давлении пиролиза, МПа: 0 (*a*), 1 (*б*), 2 (*в*): 1 - CT; 2 - BX; 3 - CF; 4 - HP; 5 - CP

Рис. 5. Зависимость температуры *T* и давления *P_V* в реакционной зоне от времени при карбонизации пеков СТ и СР: *1*, *3* — СТ; *2*, *4* — СП

Хромато-масс-спектрометрический анализ позволил идентифицировать широкий спектр соединений в растворимой в ацетоне фракции исследуемых пеков и твердых продуктов пиролиза. Было обнаружено около 70 индивидуальных веществ. Качественный анализ показал, что число соединений в пеках, обработанных при 400, 520 и 600 °С, уменьшается по сравнению с количеством соединений в исходном пеке. Это может происходить по двум причинам:

 в процессе карбонизации образуется ПАУ, которые не растворяются в ацетоне, так как

Начальное			Кокс		
давление, МПа	BX	HP	СР	CF	CT
0	4,6	4,1	4,3	4,6	4,3
1,0	4,1	2,7	4,4	4,0	4,1
2,0	3,7	4,2	4,7	4,4	5,0

Таблица 4. Микроструктура (балльность) коксов, полученных при разных давлениях

растворимость необработанного пека в ацетоне (50±10) %. В процессе карбонизации доля высокомолекулярных ПАУ увеличивается, вследствие чего уменьшается растворимость при повышении температуры обработки;

– образуются высокомолекулярные ПАУ, которые невозможно обнаружить в результате ГХМСанализа вследствие их достаточно высокой температуры кипения. Так, например, бензапирен имеет температуру кипения 495 °С, при давлении 0,5 МПа (5 бар) температура кипения достигает 600 °С.

ЗАКЛЮЧЕНИЕ

Выход коксового остатка под давлением определяется двумя факторами: температурой и давлением. Скорость подъема температуры не оказывает заметного влияния на выход коксового остатка. При увеличении начального давления карбонизации растет выход коксового остатка на 88,5 и 7,7 % для низкотемпературного и высокотемпературного пеков соответственно.

Состав исходного пека на выход коксового остатка под давлением влияет следующим образом: при увеличении содержания α-фракции, состоящей из нерастворимой в хинолине фрак-

Библиографический список

1. **Привалов, В. Е.** Каменноугольный пек / *В. Е. Привалов, М. А. Степаненко.* — М. : Металлургия, 1981. — С. 19–64.

2. **Zander, M.** Pitch characterization for industrial applications / *M. Zander, H. Marsh, E. A. Heintz* [et al.] // Introduction to Carbon Technologies. — Alicante : University of Alicante, 1997. — 434 p.

3. **Krebs, V.** Carbonization of coal-tar pitch under controlled atmosphere. Part I. Effect of temperature and pressure on the structural evolution of the formed green coke / V. Krebs, M. Ellilaoui, J. Mareche [et al.] // Carbon. -1995. -Vol. 33, No 5. - P. 645–651.

4. *Hoitinger, K. J.* Pressure effects on the yield and on the microstructure formation in the pyrolysis of coal tar and petroleum pitches / *K. J. Hoitinger, U. Rosenblatt* // Carbon. — 1977. — Vol. 15, № 2. — P. 69–74.

5. *Inagaki, M.* Carbonization under pressure / *M. Inagaki, K. Park, M. Endo* // New Carbon Materials. — 2010. — Vol. 25, № 6. — P. 409–420.

ции (α₁) и нерастворимой в толуоле фракции (α₂) выход коксового остатка увеличивается на 88,5, 60 и 55 % для 2,0, 1,0 и 0 МПа соответственно.

При повышении давления карбонизации увеличивается содержание первичных соединений и образуются новые, что связано со смещением процессов, происходящих при карбонизации, в высокотемпературную область и подавлением процессов, происходящих в низкотемпературной области.

* * *

Работа выполнена при финансовой поддержке Правительства Российской Федерации (Минобрнауки России) в рамках мероприятия 1.3 (Соглашение о предоставлении субсидии с Минобрнауки России № 14.579.21.0028 от 5 июня 2014 г.) Постановления Правительства России от 9 апреля 2010 г. № 218 «О мерах государственной поддержки развития кооперации российских высших учебных заведений и организаций, реализующих комплексные проекты по созданию высокотехнологичного производства». Номер контракта № 02.G36.31.0006.

Работа выполнена в рамках договора между ФКП «Алексинский химический комбинат» и МГУ имени М. В. Ломоносова по теме «Разработка технологии и организация производства термостойких композиционных пресс-материалов для серийного изготовления облегченных деталей сложной формы, используемых в аэрокосмической технике, наземном и морском транспорте» согласно Постановлению Правительства РФ от 9 апреля 2010 г. № 218 «О мерах государственной поддержки развития кооперации российских высших учебных заведений и организаций, реализующих комплексные проекты по созданию высокотехнологичного производства». Договор № 02.G36.31.0006.

6. *Jonson, G.* A study of the mechanism of the rapid pyrolysis of single particles of coal / *G. Jonson, P. Murdoch, A. Williams* // Fuel. — 1988. — Vol. 67, № 6. — P. 834–842.

7. Conte, R. High-temperature gasification of carbonaceous materials by flash pyrolysis: thermal aspects / R. Conte, V. Herault, S. Castillo, J. Traverge // Fuel. -1987. - Vol. 66, Ne 8. - P. 1107–1114.

8. *Marcilla, A.* Influence of the carbonization heating rate on the physical properties of activated carbons from a sub-bituminous coal / *A. Marcilla, M. Asensio, I. Martin-Gullon* // Carbon. — 1996. — Vol. 34. № 4. — P. 449–456.

9. *Marsh, H.* The carbonisation of anthracene and biphenyl under pressures of 300 MNm (3 kbar) / *H. Marsh, F. Dachille, J. Melvin* [et al.] // Carbon. — 1971. — Vol. 9, № 2. — P. 159–164.

10. *Yue, C.* Pyrolysis of pitch / *C. Yue, A. Watkinson* // Fuel. — 1998. — Vol. 77, № 7. — P. 695–711.

Получено 10.03.15 © М. А. Трофимович, А. А. Галигузов,

А. П. Малахо, В. В. Авдеев, 2015 г.