Д. т. н. **А. В. Хмелёв** (🖂)

Рижский технический университет, Институт силикатных материалов, г. Рига, Латвия

удк 549.613.4+661.862+546.271]:621.039.542.33 ПОЛУЧЕНИЕ МУЛЛИТ–СИАЛОН–ZrB₂-МАТЕРИАЛОВ ПЛАЗМЕННО-ИСКРОВЫМ СПОСОБОМ И ИХ СВОЙСТВА

Показано влияние различного соотношения сиалона и ZrB₂ в ходе плазменно-искрового спекания при нагрузке прессования 75 МПа в интервале 1200–1600 °С на фазовый состав, содержание Si₃N₄ и Al₂O₃ в сиалоне, микроструктуру, размеры зерен кристаллических фаз, относительную плотность, открытую пористость, линейную усадку, физико-механические свойства и линейную корреляцию модуля упругости и предела прочности при сжатии муллит-сиалон-ZrB₂-образцов.

Ключевые слова: муллит-сиалон-ZrB₂-материалы, плазменно-искровое спекание.

введение

сновной проблемой при плазменно-искровом спекании смесей оксидного и безоксидного порошков в отличие от аналогичного спекания смесей оксидных порошков с ростом температуры при нагрузке прессования 20-35 и 100 МПа является совместимость спекания этих порошков [1-4]. Это связано с различием коэффициентов диффузии в спекаемых оксидном и безоксидном порошках [2, 3] по сравнению с их незначительным различием в спекаемых оксидных порошках [5]. В образцах спекаемых смесей оксидного и безоксидного порошков в продольном и/или поперечном направлении развивается неравномерное и неполное спекание, формируется не полностью спекшаяся и неравномерная микроструктура, снижается трещиностойкость и ухудшаются физико-механические свойства материалов [1-4].

Данная проблема решается разными способами: плазменно-искровым спеканием порошков Al₂O₃ и SiO₂ со смесью безоксидных порошков, например TiC и ZrC, образующих при 1500 °С твердые растворы (фазы внедрения) [6], плазменно-искровым спеканием смеси Al₂O₃ и B₄C с образованием эвтектики состава оксидной фазы [7], увеличением нагрузки прессования до 75 МПа в диапазоне 1200-1600 °С и использованием высокотемпературного спекания со сверхвысокой нагрузкой прессования, в частности до 1900 °C, при 7,5 ГПа [8]. Однако такие подходы не обеспечивают получения плотноспеченных материалов, в которых сохраняются границы областей оксидных и безоксидных кристаллических фаз [6-8]. Для снижения этого эффекта используется добавка оксид-

> ⊠ A. B. Хмелёв E-mail: aleksejs.hmelov44@gmail.com, aleksejs.rtu1@inbox.lv

ного порошка, в частности Y₂O₃, образующая с оксидным и безоксидным порошками легкоплавкие эвтектики, стимулирующие диффузию вещества между частицами [9, 10]. Однако эта добавка вызывает окисление безоксидного порошка с изменением состава и уменьшением содержания бескислородного компонента и формирование стеклофазы различного состава, повышающей хрупкость материалов, с увеличением содержания добавки оксидного компонента в спекаемых плазменно-искровым способом смесях порошков и ростом температуры при небольшой нагрузке прессования [9, 10].

При плазменно-искровом спекании смеси оксидного и безоксидного порошков в качестве добавки вводят порошок сиалона. получаемый из Si₃N₄, AlN и Al₂O₃ [11]. Сиалон является твердым раствором с общей стехиометрией $Si_{6-x}Al_xO_xN_{8-x}$, где $0 < x \le 4,2$, и сочетает одновременно свойства оксидного и безоксидного компонентов [11]. В зависимости от соотношения этих компонентов диффузия вещества, а следовательно, и спекание сиалона различаются [11]. На практике применяют в основном β-SiAlON со стехиометрией Si₃Al₃O₃N₅, где x = 3, из-за более стабильной стехиометрии, отсутствия фазовой трансформации, лучшей спекаемости, роста твердости и предела прочности при сжатии материалов с повышением температуры и нагрузки прессования [11].

Цель работы — изучение влияния различного соотношения сиалона и ZrB₂ в ходе плазменноискрового спекания при нагрузке прессования 75 МПа в интервале 1200–1600 °С на фазовый состав, содержание Si₃N₄ и Al₂O₃ в сиалоне, микроструктуру, размеры зерен кристаллических фаз, относительную плотность, открытую пористость, линейную усадку, физико-механические свойства и линейную корреляцию модуля упругости и предела прочности при сжатии муллит-сиалон-ZrB₂образцов.

22

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методика получения смеси Al₂O₃ и SiO₂, порошков сиалона и ZrB₂, приготовления смесей оксидного и безоксидных порошков

Для изготовления смеси порошков Al_2O_3 и SiO₂ использовали Al_2O_3 (Aldrich, Belgium, чистота 97,5 %) и SiO₂ (Merck, Germany, чистота 97,5 %). Компоненты (табл. 1) перемешивали в пропорции, отвечающей стехиометрии муллита, равной 3:2, в планетарной мельнице RETSCH PM 400 в течение примерно 10 мин. Порошки сиалона и ZrB₂ синтезировали в плазмохимической установке в вакууме при 1600 °C в течение 1 ч с использованием порошков β -Si₃N₄ (Aldrich, Belgium, чистота 98,0 %), AlN (Merck, Germany, чистота 97,5 %), Al₂O₃ (Aldrich, Belgium, чистота 99,5 %) zrO₂ (Merck, Germany, чистота 97,5 %) и B (Aldrich, Belgium, чистота 99,5 %) по реакциям:

$$Si_3N_4 + AlN + Al_2O_3 \rightarrow Si_3Al_3O_3N_5 \ (x = 3),$$
 (1)

$$3ZrO_2 + 10B \rightarrow 3ZrB_2 + 2B_2O_3.$$
 (2)

Порошки сиалона и ZrB_2 перемешивали (см. табл. 1) в планетарной мельнице до получения однородных смесей. Расчетное содержание и соотношение Si_3N_4/Al_2O_3 в сиалоне приведены в табл. 2.

Смеси порошков Al₂O₃ с SiO₂ и сиалона с ZrB₂ смешивали в планетарной мельнице. Далее смеси засыпали в графитовую пресс-форму диаметром 30 мм и спекали плазменно-искровым методом (SPS, Summimoto, модель SPS 825. CE, Dr. Sinter, Japan) в вакууме (6 Па) при нагрузке прессования 75 МПа с выдержкой 2 мин в диапазоне 1200–1600 °C со скоростью нагрева 100 °C/мин.

Методика определения свойств полученных порошков и спеченных образцов

Фазовый состав синтезированных порошков и спеченных образцов, а также микроструктуру образцов

определяли по методике, описанной в статье [12]. Состав и интенсивность пиков элементов сиалона, муллита и ZrB₂, содержание Si₃N₄ и Al₂O₃ в сиалоне каждого образца определяли с использованием рентгеновского спектрометра рассеянных энергий JED-2300T. Размеры зерен кристаллических фаз образцов определяли с использованием лазерного гранулометра Analysette 22 NanoTec. Относительную плотность $\rho_{\text{огн</sub>}$, открытую пористость φ , линейную усадку Δl , модуль упругости $E_{\text{упр}}$, твердость по Виккерсу *HV*, площадь поверхности отпечатка *S*, предел прочности при сжатии $\sigma_{\text{ск}}$ каждого образца (см. табл. 1) рассчитывали по методу, описанному в статье [12].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Фазовый состав порошков сиалона и ZrB₂, синтезированных плазмохимическим способом, показан на рис. 1. Он представлен в основном интенсивными дифракционными максимумами β-SiAlON с незначительным количеством непрореагировавшего AlN и интенсивными дифракционными максимумами ZrB₂.

Рис. 1. Фазовый состав порошков сиалона (*a*) и ZrB₂ (*б*), синтезированных плазмохимическим способом при 1600 °C

Таблица 1. Массовые пропорции компонентов в исходных смесях*1

Π	Обозначение состава						
Показатели	M10SiAl90ZrB ₂	M30SiAl70ZrB ₂	M50SiAl50ZrB ₂	M70SiAl30ZrB ₂	M90SiAl10ZrB ₂		
Содержание, мол. %:							
β -Si ₃ Al ₃ O ₃ N ₅ * ²	10	30	50	70	90		
ZrB_2	90	70	50	30	10		
Масса компонентов β -Si ₃ Al ₃ O ₃ N ₅ /	21,79/78,21	51,69/48,31	71,43/28,57	85,38/14,62	95,75/4,25		

/ZrB₂, г на 100 г смеси

*1 3Al₂O₃/2SiO₂ на 100 г смеси для всех составов 71,8/28,2.

*2 Данная стехиометрия сиалона является расчетной с соотношением Si₃N₄/Al₂O₃, равным 0,97 при 100 мол. % β-SiAlON, она видоизменяется в совокупности с соотношением Si₃N₄/Al₂O₃ в зависимости от содержания β-SiAlON в спекаемых составах.

Таблица 2. Расчетное	содержание Si ₂ N ₄ и Al ₂ O	₂и соотношение Si₃N	₄ /АІ ₂ О ₂ в сиалоне*

Содержание сиалона (β-Si ₃ Al ₃ O ₃ N ₅) в	Содержан	Coorrespondence Si N (A) O		
спекаемых составах, мол. %	$\mathrm{Si}_3\mathrm{N}_4$	Al_2O_3	COOTHOMEHNE SI3IN4/AI2O3	
10	22,71	77,29	0,29	
30	28,71	71,29	0,40	
50	34,63	65,37	0,52	
70	40,56	59,44	0,68	
90	46,50	53,50	0,87	
100	49,48	50,52	0,97	
* Содержание Si ₃ N ₄ и Al ₂ O ₃ в сиалоне рассчитывали с учетом полного превращения исходных компонентов в β-SiAlON без				

Фазовый состав образцов, спеченных из смесей исходных компонентов плазменно-искровым методом в диапазоне 1200-1600 °С, показан на рис. 2. Образцы всех составов характеризуются интенсивной муллитизацией в диапазоне 1200-1600 °С. Это обусловлено интенсивным

структурированием и формированием муллита стехиометрического состава.

В образцах с 10 и 30 мол. % сиалона наблюдается интенсивный прирост β-SiAlON, равный увеличению содержания муллита в интервале 1200-1400 °С, из-за более активного перехода сиалона в вязкотекучее состояние. Это обусловлено наименьшим содержанием Si₃N₄ и наибольшим количеством Al₂O₃ в образцах с содержанием сиалона 10 и 30 мол. %. Однако увеличение содержания β-SiAlON немного меньше и/или сопоставимо с приростом муллита в диапазоне 1400-1600 °C (см. рис. 2, а, б). С одной стороны, это объясняется недостаточно полной диффузией Si₃N₄ в сиалоне с внедрением непрореагировавшего AlN (см. рис. 1) в структуру сиалона, а с другой — ограниченной растворимостью ZrB₂ в Al₂O₃ через диффузию Zr⁴⁺ в кристаллическую структуру β-SiAlON со встраиванием в тетраэдрическую структуру AlN_xO_{4-x}. Ограниченная растворимость ZrB₂ в Al₂O₃ связана с разным содержанием Si₃N₄ в сиалоне каждого из спекаемых составов, препятствующим снижению вязкости и насыщению Al₂O₃ диборидом циркония. Одновременно интенсивный прирост показывает ZrB₂ в интервале 1200-1600 °C, что обусловлено наибольшим ростом зерен ZrB₂ с повышением температуры.

Образец с 50 мол. % сиалона показывает примерно равный рост содержания β-SiAlON и ZrB₂ с некоторым возрастанием этих кристаллических фаз в диапазоне 1200-1600 °С (см. рис. 2, в). Это обусловлено снижением растворимости ZrB₂ в Al₂O₃ с уменьшением его содержания в сиалоне, возрастанием растворимости ZrB2 в Si3N4 в твердой фазе и менее интенсивным ростом зерен ZrB₂ в диапазоне 1200-1600 °С. В свою очередь, образцы с 70 и 90 мол. % сиалона показывают активное увеличение содержания β-SiAlON, особенно в интервале 1400-1600 °С (см. рис. 2, г, д). При этом прирост β-SiAlON сопоставим с увеличением количества муллита и/или немного больше в данном температурном диапазоне по сравнению с приростом β-SiAlON до 1400 °C. Это обусловлено возрастающей диффузией Si₃N₄ в составе сиалона и активным растворением ZrB2 в Si3N4 в твердой фазе через диффузию Zr⁴⁺ в кристаллическую структуру β-SiAlON со встраиванием в тетраэдрическую структуру SiN_xO_{4-x}, что способствует структурированию сиалона. Одновременно в этих образцах наблюдается интенсивное увеличение содержания ZrB₂ в интервале 1400-1600 °С (см. рис. 2, г, д), что объясняется минимальным ростом зерен ZrB₂. В результате этого стимулируются упорядочивание и структурирование ZrB₂ в этих образцах при нагрузке прессования 75 МПа с ростом температуры. Указанные механизмы встраивания Zr4+ в тетраэдрические структуры AlN_xO_{4-x} и SiN_xO_{4-x} по-разному влияют на интенсивность структурирования и кристаллизации Si₃N₄ и Al₂O₃ при изменении содержания Si_3N_4 и Al_2O_3 и соотношения Si_3N_4/Al_2O_3 в сиалоне

с ростом температуры. Образцы с разным содержанием сиалона и ZrB_2 различаются количественным соотношением дифракционных максимумов β -SiAlON и ZrB_2 (см. рис. 2). Взаимодействие муллита с β -SiAlON и ZrB_2 в диапазоне 1200–1600 °C не происходит, так как не образуется продуктов распада муллита и сиалона, а также продуктов окисления (восстановления) ZrB_2 (см. рис. 2).

Элементный состав муллита, β -SiAlON и ZrB₂ по данным рентгеноспектроскопии в образцах составов M90SiAl10ZrB₂-M10SiAl90ZrB₂, спеченных при 1200 и 1500 °C, показан на рис. 3.

Рис. 3. Элементный состав муллита, β-SiAlON и ZrB2 в образцах M10SiAl90ZrB2–M90SiAl10ZrB2, спеченных при 1200 и 1500 °C

Данные элементного состава муллита, β-SiAlON и ZrB₂ в образцах, спеченных при 1200 и 1500 °С, соответствуют результатам рентгенофазового анализа образцов при аналогичных температурах (см. рис. 2). Формирование пиков Si и Al разной степени интенсивности связано с соответствующим структурированием кристаллических фаз муллита и сиалона (см. рис. 2). Увеличение содержания сиалона по-разному влияет на содержание элементов, экспериментальную стехиометрию сиалона при 1200 и 1500 °С (табл. 3), количество Si₃N₄ и Al₂O₃ (табл. 4), соотношение Si₃N₄/Al₂O₃ (табл. 5) в сиалоне каждого из образцов, спеченных в интервале 1200-1600 °С. Расположение пиков Si и Al, входящих в состав муллита и сиалона, совпадает, так как в обоих соединениях катионы Si и Al равнокоординированы и находятся в схожих видоэдрических позициях кристаллических структур этих фаз. Кроме того. при 1500 °C в элементном составе образцов с 10 и 30 мол. % сиалона интенсивность пиков циркония ниже, чем в образцах с 50-90 мол. % сиалона. В первом случае это обусловлено интенсивным растворением ZrB_2 в Al_2O_3 в составе сиалона, ростом зерен ZrB₂ и, как результат, менее активным структурированием ZrB₂, а во втором — менее интенсивным растворением ZrB₂ в Si₃N₄ в составе сиалона с минимальным ростом зерен ZrB₂ и более развитым структурированием ZrB₂ в твердой фазе с соответствующим развитием ZrB_2 (см. рис. 2, $e-\partial$).

Микроструктура образцов, спеченных плазменно-искровым способом при 1500 °С, показана на рис. 4. Микроструктура образца состава M30SiAl70ZrB₂ (см. рис. 4, *a*) состоит в основном из областей плотного расплава муллита и сиалона в виде плотных агрегатов разного размера, с незначительным количеством пор малого размера. Это объясняется переходом образующегося муллита и сиалона в вязкотекучее состояние.

Микроструктура образца состава M50SiAl50ZrB₂ (см. рис. 4, б) неравномерна и представлена слабо спекшимися аморфно-(полукристаллическими) кристаллическими агрегатами муллита и сиалона, зернами ZrB₂, а также значительным количеством пор относительно крупных размеров. Это коррелирует с данными по открытой пористости образца при 1500 °C (рис. 5). Такую микроструктуру можно рассматривать как начало кристаллизации. Это связано с инициацией растворения ZrB₂ в Si₃N₄ в твердой фазе и соответствует наибольшему соотношению Si₃N₄/Al₂O₃ в сиалоне в образце, спеченном при 1500 °С (см. табл. 5). Наиболее кристаллическая и частично неоднородная микроструктура образца формируется при спекании образца соста-

Таблица 5. Соотношение Si₃N₄/Al₂O₃ в сиалоне

Температура спекания, °С	Соотношение Si ₃ N ₄ /Al ₂ O ₃ в образцах с содержанием сиалона, мол. %					
	10	30	50	70	90	
1200	0,07	0,33	0,73	1,80	4,46	
1300	0,09	0,36	0,79	1,93	4,60	
1400	0,09	0,38	0,85	2,06	4,85	
1500	0,10	0,39	0,90	2,10	4,91	
1600	0,11	0,40	0,93	2,18	5,22	

Таблица 3. Элементный состав сиалона и экспериментальная стехиометрия сиалона* в образцах, спеченных при разных температурах

Содержание	Содержание элемента, %				Экспериментальная			
сиалона, мол. %	Si	Al	0	N	стехиометрия			
	Температура спекания 1200 °С							
10	8,14	50,67	10,14	31,05	$Si_{8,14}Al_{50,67}O_{10,14}N_{31,05}$			
30	24,29	34,42	9,22	32,07	$Si_{24,29}Al_{34,42}O_{9,22}N_{32,07}$			
50	38,07	19,97	7,85	34,11	Si _{38,07} Al _{19,97} O _{7,85} N _{34,11}			
70	44,46	13,49	5,30	36,75	$Si_{44,46}Al_{13,49}O_{5,30}N_{36,75}$			
90	52,12	5,75	3,89	38,24	$Si_{52,12}Al_{5,75}O_{3,89}N_{38,24}$			
		Температу	ура спекания 1500	°C				
10	9,75	54,70	11,75	23,80	Si _{9,75} Al _{54,70} O _{11,75} N _{23,80}			
30	29,30	35,57	9,67	25,46	$Si_{29,30}Al_{35,57}O_{9,67}N_{25,46}$			
50	42,36	23,80	8,35	25,49	Si _{42,36} Al _{23,80} O _{8,35} N _{25,49}			
70	49,54	19,95	6,97	23,54	$Si_{49,54}Al_{19,95}O_{6,97}N_{23,54}$			
90	59,20	10,29	5,20	25,31	$Si_{54,20}Al_{10,29}O_{5,20}N_{25,31}$			
* Содержание элементов Si, Al, O, N в сиалоне определяли по зернам; погрешность содержания элементов ±0,3, ±0,35,								

 $\pm 0,2, \pm 0,31$ соответственно.

26

Таблица 4. Содержание Si₃N₄ и Al₂O₃*1 в сиалоне

Температура	Содержание ${ m Si}_3{ m N}_4$ и ${ m Al}_2{ m O}_3^{st2}$, %, в образцах с содержанием сиалона, мас. %					
спекания, °С	10	30	50	70	90	
1200	7,25 / 92,75	25,07 / 74,93	42,20 / 57,80	64,30 / 35,70	81,70 / 18,30	
1300	8,57 / 91,43	26,93 / 73,07	44,25 / 55,75	65,90 / 34,10	82,15 / 17,85	
1400	8,85 / 91,15	27,90 / 72,10	46,10 / 53,90	67,40 / 32,60	82,92 / 17,08	
1500	9,75 / 90,25	28,07 / 71,93	47,50 / 52,50	67,80 / 32,20	83,10 / 16,90	
1600	9,93 / 90,07	29,03 / 70,97	48,30 / 51,70	68,60 / 31,40	83,93 / 16,07	
*1 Содержание Si ₃ N ₄ и Al ₂ O ₃ рассчитывали по количественному содержанию элементов в сиалоне (см. табл. 3) с точностью ±2 %.						
*2 В числителе — содержание Si $_3N_4$, в знаменателе — содержание Al $_2O_3$.						

Рис. 4. Микроструктура образцов составов M30SiAl70ZrB₂ (*a*), M50SiAl50ZrB₂ (*b*) и M70SiAl30ZrB₂ (*b*), спеченных при 1500 °С

ва M70SiAl30ZrB₂ (см. рис. 4, в). Она состоит из множества спекшихся кристаллических агрегатов муллита и сиалона разного размера, зерен ZrB₂, незначительного количества пор небольшого размера. Это указывает на неравномерную диффузию вещества в ходе твердофазного спекания.

Результаты измерения размеров зерен кристаллических фаз, $\rho_{\text{отн}}$, ϕ , Δl , а также оценки физико-механических свойств образцов с разным соотношением сиалона и ZrB₂ показаны на рис. 5-8. Наиболее интенсивно с соответствующим уменьшением ф спекаются образцы составов M10SiAl90ZrB₂ и M30SiAl70ZrB₂ в интервале 1200-1400 °С. Это обусловлено активным вязким течением муллита и сиалона в поры. Однако в интервале 1400-1500 °С наблюдается плавный рост $\rho_{\text{отн}}$ и Δl образцов с равновесным развитием свойств в диапазоне 1500-1600 °С. Это обусловлено наиболее полным заполнением пор вследствие вязкого течения муллита и сиалона, растворением ZrB₂ в большем количестве Al₂O₃ в образцах с 10 и 30 мол. % сиалона (см. табл. 4) и большим ростом зерен ZrB₂ (см. рис. 5) в диапазоне 1400-1600 °С. При этом формируются сравнительно небольшие размеры зерен ZrB₂ в интервале 1200-1600 °С. Это обусловлено ограниченной растворимостью ZrB₂ в Al₂O₃ благодаря разному содержанию Si₃N₄ в сиалоне каждого состава (см. табл. 4), по-разному препятствующему снижению вязкости и насыщению Al₂O₃ диборидом циркония с ростом температуры. Наиболее активно этот процесс развивается в образце с 30 мол. % сиалона (см. рис. 6). Это объясняется инициацией растворения ZrB₂ в Si₃N₄ в твердой фазе с уменьшением содержания Al₂O₃ в сиалоне в образце с 30 мол. % сиалона (см. табл. 4). Одновременно в обоих образцах наблюдается разное по интенсивности увеличение размеров зерен муллита и сиалона, которое меньше, чем рост размеров зерен ZrB₂, с формированием полидисперсного состава кристаллических фаз в диапазоне 1200-1600 °С (см. рис. 5).

Образец состава M50SiAl50ZrB₂ показывает прямолинейный рост спекания в интервале 1200-1600 °C. Это связано с увеличением растворимости ZrB₂ в Si₃N₄ в твердой фазе, более

Рис. 5. Размеры зерен кристаллических фаз образцов, спеченных при 1200–1600 °С, с разным соотношением сиалона и $\rm ZrB_2$

Рис. 6. Показатели ротн, ф и ∆l образцов, спеченных при 1200–1600 °С, с разным соотношением сиалона и ZrB₂: ♦ — M10SiAl90ZrB₂; ■ — M30SiAl70ZrB₂; ▲ — M50SiAl50ZrB₂; × — M70SiAl30ZrB₂; ● — M90SiAl10ZrB₂

Рис. 7. Показатели E_{ynp} , HV и σ_{cx} образцов, спеченных при 1200–1600 °С, с разным соотношением сиалона и ZrB₂: ◆ — M10SiAl90ZrB₂; ■ — M30SiAl70ZrB₂; ▲ — M50SiAl50ZrB₂; × — M70SiAl30ZrB₂; ● — M90SiAl10ZrB₂

интенсивно происходящей при твердофазном и менее интенсивно при жидкофазном (вязкотекучем) механизме спекания, что связано с переходным этапом спекания от вязкотекучего к твердофазному (см. рис. 6). Это коррелирует с соотношением Si₃N₄/Al₂O₃ в сиалоне (см. табл. 5) и с формирующейся полукристаллической микроструктурой образца (см. рис. 4, б). В результате не полностью заполняются поры и выравниваются размеры зерен муллита, сиалона и ZrB₂ с формированием относительно полидисперсного состава в интервале 1200-1600 °С (см. рис. 5). При этом наблюдается активный рост размеров зерен ZrB₂ с повышением температуры. Это объясняется большим содержанием Al₂O₃ в сиалоне (см. табл. 4), что способствует сравнительно интенсивному растворению ZrB₂ в Al₂O₃, вызывающему повышенную диффузию и укрупнение зерен ZrB₂ в этом составе.

Образцы составов M70SiAl30ZrB₂ и M90SiAl10ZrB₂ показывают наименее интенсивный рост спекания и соответствующее снижение φ в интервале 1200-1400 °С, что обусловлено заполнением пор в основном вязким течением муллита и незначительной диффузией Si₃N₄. Более активный рост спекания наблюдается в диапазоне 1400-1600 °С. Это объясняется возрастающей диффузией Si₃N₄ в составе сиалона и активным растворением ZrB₂ в Si₃N₄ в твердой фазе, что способствует твердофазному спеканию. Данная стадия соответствует наибольшему соотношению Si₃N₄/Al₂O₃ в сиалоне в диапазоне 1200-1600 °C (см. табл. 5). В то же время при твердофазном спекании этих составов формируется монодисперсный состав зерен муллита, сиалона и ZrB₂ (см. рис. 5). При этом в образце с 90 мол. % сиалона наблюдается наиболее монодисперсный состав зерен кристаллических фаз. Наименьшие размеры зерен сиалона и ZrB₂ связаны с активным твердофазным спеканием этих составов и интенсивным растворением ZrB2 в Si3N4 в твердой фазе, в ходе которых диффузия вещества неравномерна и сильно ограничена.

Образцы составов M10SiAl90ZrB₂ и M30SiAl70ZrB₂ в интервале 1300-1500 °C показывают значительный рост Еупр. Это обусловлено большим содержанием оксидной фазы в сиалоне (см. табл. 4), развитием аморфной микроструктуры (см. рис. 4, *a*) и полидисперсного состава зерен муллита, сиалона и ZrB₂ в каждом из образцов с ограниченным ростом зерен ZrB₂ (см. рис. 5), уплотняющих структуру материала. В результате значительно улучшаются упругие свойства и сопротивление образцов воздействию приложенной внешней нагрузки, повышаются *HV* и σ_{cw} . Трещиностойкость образца состава M30SiAl70ZrB₂ увеличивается с сохранением целостности его структуры без образования микротрещин (см. рис. 8, а).

Увеличение E_{ynp} образцов составов М50SiAl50ZrB₂, M70SiAl30ZrB₂ и M90SiAl10ZrB₂ в интервале 1300–1500 °С неравномерно. Это связано с возрастанием растворимости ZrB₂ в Si₃N₄ в твердой фазе (см. рис. 2, β – ∂), формированием полукристаллической микроструктуры (см. рис. 4, δ), кристаллической и частично неоднородной

Рис. 8. Отпечатки вдавливания при измерении *HV* на образцах составов M30SiAl70ZrB₂ (*a*), M50SiAl50ZrB₂ (*b*) и M70SiAl30ZrB₂ (*b*), спеченных при 1500 °C

28

микроструктуры образца с кристаллическими агрегатами муллита и сиалона (см. рис. 4, в) относительно полидисперсного и монодисперсного состава зерен муллита, сиалона и ZrB₂ в каждом образце (см. рис. 5). Такое изменение упругих свойств влияет на рост HV и осж образцов. Кроме того, эти образцы характеризуются меньшей трещиностойкостью с формированием разного количества микротрещин, распространяющихся по прямолинейной (см. рис. 8, б), извилистой и извилисто-прямолинейной траекториям (см. рис. 8, в). В первом случае это объясняется относительной полидисперсностью состава зерен кристаллических фаз, выравниванием размеров зерен муллита, сиалона, ZrB₂ (см. рис. 5) и возрастающим соотношением Si₃N₄/Al₂O₃ в сиалоне (см. табл. 5), во втором — большим содержанием не полностью спекшихся зерен кристаллических фаз и неравномерными границами их контактов, что увеличивает внутренние напряжения и хрупкость по границам зерен.

Результаты линейной корреляции $E_{\rm ynp}$ и $\sigma_{\rm cm}$ спеченных образцов показаны на рис. 9. В образцах составов M10SiAl90ZrB₂ и M30SiAl70ZrB₂ возрастает линейная корреляция $E_{\rm ynp}$ и $\sigma_{\rm cm}$ образцов с наибольшими значениями достоверности аппроксимации R^2 , с минимальным отклонением линейных прямых относительно точек (значений свойств данных образцов). Это объясняется большим уплотнением структуры зернами ZrB₂ и улучшением упругих свойств образцов (см. рис. 7). Однако R^2 образца с 10 мол. % сиалона немного меньше, чем у образца с 30 мол. % сиалона, что связано с формированием более аморфной микроструктуры и большими размерами зерен ZrB₂ в интервале 1200–1600 °C (см. рис. 5).

M50SiAl50ZrB₂, Образцы составов M70SiAl30ZrB2 и M90SiAl10ZrB2 характеризуются наименьшей линейной корреляцией $E_{\text{упр}}$ и $\sigma_{\text{сж}}$ с соответствующей R². Это обусловлено формированием полукристаллической (см. рис. 4, б), кристаллической и частично неоднородной микроструктуры (см. рис. 4, в), формированием полидисперсного и монодисперсного составов зерен муллита, сиалона, ZrB₂ в каждом образце (см. рис. 5), развитием твердофазного спекания (см. рис. 6) и неравномерным увеличением Еупр образцов (см. рис. 7) в диапазоне 1300–1500 °С. При этом R² образцов с 50 и 70 мол. % сиалона выше, чем у образца с 90 мол. % сиалона, что обусловлено меньшим содержанием Si₃N₄ и большим количеством Al₂O₃ в сиалоне (см. табл. 4), менее интенсивным развитием твердофазного спекания и снижением его влияния на улучшение физико-механических свойств образцов в диапазоне 1300-1500 °С (см. рис. 7). Значимого отклонения линейной прямой относительно точек Е_{упр} и σ_{сж} образца с 70 мол. % сиалона не наблюдается в отличие от больших отклонений линейных прямых относительно точек (значений) свойств образцов с 50 и 90 мол. % сиало-

Рис. 9. Линейная корреляция *E*_{упр} и σ_{сж} образцов в диапазоне 1200–1600 °С: ◆ — M10SiAl90ZrB₂; ■ — M30SiAl70ZrB₂; ▲ — M50SiAl50ZrB₂; × — M70SiAl30ZrB₂; ● — M90SiAl10ZrB₂

на. В образце с 50 мол. % сиалона такой результат объясняется переходным этапом от вязкотекучего спекания к твердофазному (см. рис. 6), а в образце с 90 мол. % сиалона — наиболее интенсивным и неравномерным твердофазным спеканием в диапазоне 1200–1600 °С (см. рис. 6). В то же время линейные прямые образцов с 70 и 90 мол. % сиалона располагаются относительно одной прямой. Это связано с образованием схожих микроструктур, формированием наиболее монодисперсного состава зерен муллита, сиалона, ZrB₂ этих образцов (см. рис. 5) и более активным твердофазным спеканием (см. рис. 6).

ЗАКЛЮЧЕНИЕ

Показано влияние различного соотношения сиалона и ZrB_2 в ходе плазменно-искрового спекания при нагрузке прессования 75 МПа в интервале 1200–1600 °С на фазовый состав, содержание Si_3N_4 и Al_2O_3 в сиалоне, микроструктуру, размеры зерен кристаллических фаз, $\rho_{\text{отн}}$, ϕ , Δl , физикомеханические свойства и линейную корреляцию $E_{\text{упр}}$ и $\sigma_{\text{сж}}$ муллит-сиалон- ZrB_2 -образцов.

Синтезированные порошки сиалона и ZrB₂ характеризуются интенсивной кристаллизацией β-SiAlON и ZrB₂ с незначительным количеством непрореагировавшего AlN в порошке сиалона.

Спеченные образцы с различным соотношением β -SiAlON и ZrB₂ показывают интенсивную муллитизацию в интервале 1200–1600 °C. Увеличение содержания сиалона и снижение концентрации ZrB₂ в соотношении сиалон/ZrB₂ способствуют повышению содержания β -SiAlON и ZrB₂, Si₃N₄ с уменьшением количества Al₂O₃ в сиалоне в диапазоне 1200–1600 °C, формированию при 1500 °C зернисто-кристаллической микроструктуры образца со множеством пор разного размера, а также наиболее монодисперсного состава зерен муллита, сиалона и ZrB₂ в диапазоне 1200–1600 °C. Образцы с высоким содержанием сиалона спекаются наименее интенсивно и имеют худшие показатели физико-механических

свойств в интервале 1200-1600 °С, меньшую трещиностойкость при 1500 °C, структуру с присутствием микротрещин, распространяющихся по извилистой траектории вокруг отпечатка вдавливания, и меньшую линейную корреляцию Еуда и о_{сж} в интервале 1200-1600 °С.

Библиографический список

1. Ghahremani, D. Densification, microstructure and mechanical properties of mullite-TiC composites prepared by spark plasma sintering / D. Ghahremani, T. *E. Ebadzadeh ||* Ceram. Inter. — 2015. — Vol. 41, № 2. — P. 1957-1962.

2. Chuan, S. Effect of alumina addition on the densification of boron carbide ceramics prepared by spark plasma sintering technique / S. Chuan, L. Yunkai, W. Yunfei, Z. Lingbo // Ceram. Inter. — 2014. — Vol. 40, № 8. - P 12723-12728

3. Hotta, M. Densification and microstructure of Al₂O₃cBN composites prepared by spark plasma sintering / M. Hotta, T. Goto // J. Ceram. Soc. Jap. - 2008. - Vol. 116, № 6. — P. 744–748.

4. Hotta, M. Densification, phase transformation and hardness of mullite-cubic BN composites prepared by spark plasma sintering / M. Hotta, T. Goto // J. Ceram. Soc. Jap. — 2010. — Vol. 118, № 2. — P. 157–160.

5. Хмелёв, А. В. Получение муллитоциркониевой керамики плазменно-искровым способом / А. В. Хмелёв // Новые огнеупоры. — 2014. — № 4. — С. 33–38.

Hmelov A. V. Production of a mullite-zirconia ceramic by the plasma-spark method / A. V. Hmelov // Refractories and Industrial Ceramics. - 2014. - Vol. 55, № 2. — P. 137–142.

6. Хмелёв, А. В. Получение муллит-TiC-ZrCкерамических материалов плазменно-искровым способом и их свойства / А. В. Хмелёв // Новые огнеупоры. — 2016. — № 12. — C. 36–41.

Hmelov A. V. Preparation of mullite-TiC-ZrC ceramic materials by a plasma-ARC method and their properties / A. V. Hmelov // Refractories and Industrial Ceramics. — 2017. — Vol. 57, № 6. — P. 645–650.

7. Kelvin. Y. X. Effect of alumina on the structure and mechanical properties of spark plasma sintered boron carbide / Y. X. Kelvin, F. T. Muhammet, K. Kanak, Z. Binwei // J. Am. Ceram. Soc. — 2014. — Vol. 97, № 11. — P. 3710-3718.

8. *Klimczyk*, *P*. Al₂O₃-*c*BN composites sintered by SPS and HPHT methods / P. Klimczyk, M. E. Cura, A. M. Vlaicu // J. Eur. Ceram. Soc. — 2016. — Vol. 36, № 7. — P. 1783-1789.

9. Zhang, X. Effect of Y2O3 on microstructure and mechanical properties of ZrB₂-SiC / X. Zhang, X. Li, J. Han, W. Han // J. All. Comp. — 2008. — Vol. 465. № 1/2. — P. 506–511.

10. Guo, S. High-strength zirconium diboride-based ceramic composites consolidated by low temperature hot pressing / S. Guo, Y. Kagawa // Sci. Techn. Adv. Mat. -2012. — Vol. 13, № 4. — P. 1–6.

11. Calloch, P. New reaction paths for advanced SiAlON/ TiN composites / P. Calloch // A thesis submitted to Victoria University of Wellington. — 2015. — P. 8–12.

12. Хмелёв, А. В. Получение муллит-ТіС-ТіNматериалов плазменно-искровым способом и их свойства / А. В. Хмелёв // Новые огнеупоры. — 2017. — № 8. - C. 22-30.

Hmelov, A. V. Preparation of mullite-TiC-TiN materials by a plasma spark method and their properties / A. V. Hmelov // Refractories and Industrial Ceramics. — 2017. — Vol. 58, № 4. — P. 418–425.

> Получено 05.07.18 © А. В. Хмелёв, 2018 г.

REFRA 2019 — 20-я КОНФЕРЕНЦИЯ ПО СОВРЕМЕННЫМ ОГНЕУПОРНЫМ МАТЕРИАЛАМ 24-26 апреля 2019 г. г. Прага, Чешская Республика • Энергетические аспекты высокотемпературной обработки • Огнеупорные и теплоизоляционные материалы для высокотемпературных процессов • Коррозия огнеупорных материалов • Структура огнеупорных материалов и их модификация наноматериалами • Новые свойства огнеупорных материалов www.silicaty.cz

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Темы: