Д. т. н. **Т. А. Хабас¹** (🖾), д. т. н. **Т. В. Вакалова**¹, **К. С. Камышная**¹, **Е. В. Дьяконова**¹, **А. И. Черепанова**¹, к. т. н. **А. А. Бирюкова**²

 1 ФГАОУ ВО «Национальный исследовательский Томский политехнический университет», г. Томск, Россия
 2 Институт металлургии и обогащения, г. Алматы,

Республика Казахстан

удк 666.3:549.6]-127 ПОРИСТАЯ КОРДИЕРИТОВАЯ КЕРАМИКА С ПОРООБРАЗОВАТЕЛЯМИ РАЗНОЙ ПРИРОДЫ

Приведены результаты разработки керамических пористых материалов на основе кордиерита. В качестве порообразователя применяли древесные отходы и карбамид в кристаллическом виде. Анализ поровой структуры показал, что все образцы имеют сложную структуру порового пространства с большим количеством удлиненных связанных пор. Наилучшие параметры пористости и достигнуты с применением органического кристаллического порообразователя. Показано, что нанодисперсный металлический алюминий оказывает упрочняющее действие при спекании пористой керамики. Глиноорганическая суспензия улучшает спекаемость кордиеритового порошка и приводит к образованию дополнительных нано- и микропор.

Ключевые слова: кордиеритовая керамика, древесные отходы, карбамид, нанопорошок алюминия (НПА).

введение

Керамические материалы на основе кордие-рита (Mg₂Al₄Si₅O₁₈) благодаря низкому ТКЛР, хорошим диэлектрическим свойствам и высокой химической стойкости [1] являются важным сегментом современной керамической промышленности и широко используются в качестве керамических изоляторов, теплоизоляторов, носителей катализаторов для очистки воздуха от выхлопных выбросов автотранспорта [2-5] и др. Такая керамика применяется достаточно давно, но интерес к синтезу кордиерита из различного сырья и приданию керамике необходимых свойств не ослабевает. В настоящее время известны разные варианты синтеза кордиерита, в том числе спеканием оксидов, по золь-гель технологии и др. [6, 7]. Однако в основном кордиерит по-прежнему получают твердофазным спеканием природных минеральных смесей с компонентами в виде талька, магнезита, каолинита, сепиолита, андалузита, диатомита, полевого шпата и других минералов [8-11, 14]. В такую смесь обычно вводят глину, тальк и глинозем. При этом эффективность процесса твердофазного спекания зависит от свойств всех компонентов.

Среди разнообразных изделий из кордиеритовой керамики важное место занимает пористая керамика. Для ее получения исследуют

> ⊠ T. A. Xaбac E-mail: habas@yandex.ru

различные порообразователи: полностью выгорающие (кукурузная мука, крахмал картофельный и кукурузный, семена мака [10–14]) или частично выгорающие добавки (горючие сланцы [15], продукты горения, газовыделяющие добавки, в том числе промышленные отходы — зола уноса [16], феррошлак [17]), из которых только небольшое число обеспечивает создание не замкнутой, а сквозной (проницаемой) пористости. Керамику с закрытой пористостью получают, применяя методы пено- и гелеобразования, контролируемой сушки, замораживания и вымораживания [18, 19]. Особый интерес вызывает керамика с проницаемой пористостью, которая может быть применена для создания фильтров и носителей катализаторов. В их числе самым доступным является применение древесных отходов в виде опилок. При этом для создания проницаемой пористости пригодны только древесные опилки игольчатой формы, следовательно, необходимы предварительный рассев и разделение опилок по размеру и форме, что само по себе является непростой задачей. Кроме того, в качестве малозольной выгорающей добавки-порообразователя могут быль успешно использованы некоторые органические соединения, например камфен и карбамид [20-22]. При создании определенных условий возможна организация направленной кристаллизации органической добавки в оксидной суспензии, что обеспечивает сквозную проницаемость керамики [18, 20]. Однако это сложно организуемый процесс, требующий большого внимания исследователей и точного воспроизведения температурных и временных параметров. Количество выгорающей добавки обычно составляет 20-30 мас. %, так как увеличение пористости снижает механическую прочность керамики.

Цель настоящей работы — получение кордиеритовой керамики с заданным фазовым составом и высокой проницаемой пористостью на основе природных глиноземсодержащих и магнезиальносиликатных материалов с применением наномодифицированной связки и двух типов порообразователей.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Синтез кордиерита проводили в смесях, содержащих огнеупорную глину и серпентинитсодержащее магнезиально-силикатное сырье Казахстана. В качестве компонента, вносящего недостающий оксид алюминия, применены глинозем и боксит. Химический состав исходных материалов приведен в табл. 1, состав шихт для синтеза кордиерита — в табл. 2. Исходные компоненты предварительно измельчали в сухом виде до прохождения через сито с размером ячейки 0,063 мм. Смесь компонентов тщательно перемешивали в шаровой мельнице при соотношении материал : шары : вода — 2 : 2 : 1 в течение 8 ч. Далее из шихты в воздушно-сухом виде формовали брикеты под давлением 45-50 МПа, которые обжигали при 1200-1300 °С с выдержкой при конечной температуре 2 ч.

Для формирования поровой структуры керамики в группу образцов I в качестве порообразователя вводили древесные опилки, в группу образцов II — кристаллы карбамида. Технический карбамид CO(NH₂)₂ — диамид угольной кислоты (мочевина) содержит 46,6 % азота и 56,7 % аммиака. В чистом виде карбамид представляет собой бесцветные кристаллы, не имеющие запаха, плотностью 1335 кг/м³ и температурой плавления 132,4 °С. Выпускается карбамид в виде сферических гранул. Особенностью проводимых исследований является то, что для реализации проницаемой пористости необходимо применение и того, и другого порообразователя в виде удлиненных частиц. Поэтому для введения в массу выбирали древесные опилки иглообразной формы, а карбамид предварительно подвергали перекристаллизации с получением иглообразных кристаллов (рис. 1). Перед введением в шихту порообразователи просеивали и использовали фракцию 1,25-0,63 мм.

Образцы формовали из порошка синтезированного и измельченного кордиерита методом полусухого одноосного прессования под дав-

Таблица 2. Состав шихт для синтеза кордиерита

Шифр	Содержание компонента, мас. %							
шихты	глина	серпентинит	глинозем	боксит				
1K	60,00	30,00	10,00	-				
2K	57,25	26,71	_	16,04				

Таблица 1. Химический состав используемого сырья, мас. %

· · · · · · · · · · · · · · · · · · ·													
Материал	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	K ₂ O	Na ₂ O	TiO ₂	$\Delta m_{ m npk}$				
Глина огнеупорная	37,20	40,40	1,93	< 0,10	0,83	0,32	0,12	2,70	16,40				
Серпентинитовая порода	34,80	0,90	7,30	39,00	0,80	-	-	_	17,20				
Боксит	7,60	47,80	17,30	< 0,10	1,14	0,03	0,03	3,5	22,50				
Глинозем технический ГК-1	0,12	99,85	0,030	0,07	0,01	0,30	0,30	0,01	0,20				

Рис. 1. Игольчатые частицы порообразователя: *а* — перекристаллизованный карбамид; *б* — карбамид; *в*, *г* — древесные опилки

лением 40-50 МПа (диаметр образцов 36 мм) и 115-150 МПа (диаметр образцов 20 мм) и спекали в воздушной среде. При формовании применяли связки на водной основе (образцы группы I с порообразователем в виде древесных опилок) и на основе парафина (образцы группы II с органическим порообразователем). В образцах группы I применяли два вида наномодифицированных связующих: суспензию нанопорошка алюминия (НПА) в растворе карбоксиметилцеллюлозы (КМЦ) и органо-минеральную связку. В последнем варианте при этом использовали смесь раствора КМШ с сухим порошком огнеупорной глины, которая является природным наноструктурированным материалом. НПА (d_{cp} = = 60÷80 нм) перед введением в шихту освобождали от технологических включений: крупных частиц, коротких кусочков проволоки просеиванием в сухом виде через сито № 025. Таким образом, связки содержали 0,5, 1,0 и 2,0 мас. % НПА в составе шихты или 5 и 10 мас. % порошка глины; при этом масса 3 %-ного раствора органической связки в смеси составляла 6-8 мас. %.

При подготовке шихты к прессованию образцов группы I применяли следующую последовательность: в первом случае НПА перемешивали с порошком синтезированного кордиерита и древесных опилок (2 %), затем в смесь вводили органическую связку, компоненты тщательно перемешивали, смесь оставляли для дозревания на 5-10 ч в герметичной емкости. Затем образцы группы I формовали полусухим прессованием без повторного добавления связки. Во втором случае (также образцы группы I с порообразователем в виде опилок) в первую очередь к порообразователю (древесным опилкам) добавляли раствор органической связки (3 %-ный раствор КМЦ), тонкоизмельченный порошок глины, компоненты тщательно перемешивали, затем вводили кордиерит. Анализ морфологии прессовок показал. что шихта с добавкой связки, модифицированной НПА, наиболее пластична. Прессовки, полученные под давлением 117-132 МПа, не имеют видимых дефектов.

Применение органического выгорающего порообразователя карбамида в образцах группы II требует особой технологии введения. Ввиду его легкой растворимости в воде, что влечет за собой потерю игольчатой формы, при приготовлении гранулята для прессования необходимо применение только неполярной среды. В данном исследовании использовали расплав парафина, в котором распределяли заранее приготовленную смесь порошка кордиерита и порообразователя в соотношении 80 : 20 мас. % соответственно. Оптимальная масса парафина подобрана в количестве 12,5 % сверх 100 % основной смеси. Фактически такая смесь в горячем виде представляет собой термопластичный шликер, но в данном исследовании предпочтительно было приготовить порошок (гранулят) для прессования. Протиранием охлажденной смеси через сито можно создать гранулят любой дисперсности.

Фазовые превращения в процессе термообработки исследовали с помощью рентгеновской дифрактометрии. При анализе структуры керамических материалов применяли электронный микроскоп JCM-6000 (JEOL), характер пористости керамики определяли методом ртутной порометрии на приборе Pore Master 33 (Quantachrome), который позволяет оценивать размеры пор в диапазоне от 0,0064 до 950 мкм и их распределение по объему. Проницаемую пористость измеряли методом насыщения образцов водой по соотношению объема впитываемой воды к объему всего материала.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Синтез кордиерита и прочность спекаемой керамики

Изменение фазового состава при термообработке шихт с добавками глинозема и боксита несколько различается (см. табл. 2, рис. 2, *a*). Однако наложение дифрактограмм образцов показывает, что при достижении температуры обжига 1300 °С качественный фазовый состав синтезируемых материалов обеих шихт практически идентичен (рис. 2, *б*). Но, несомненно,

Рис. 2. Изменение интенсивности главного рефлекса кордиерита (0,845 нм) при разных температурах синтеза (*a*) и рентгенограммы шихты с добавкой боксита (*2K*) и глинозема (*1K*) после обжига при 1300 °С (*б*)

48

что присутствие в добавке бокситовой породы большого количества примесей (особенно железа) облегчает при низких температурах синтез (возможно, из-за образования некоторого количества расплава) и лучшее спекание.

По этой причине образцы, полученные при спекании кордиерита, синтезированного из шихты 2K с бокситом, отличаются более высокой прочностью (рис. 3). Для увеличения меха-

Рис. 3. Предел прочности при сжатии σ_{сж} образцов керамики с различным содержанием НПА (порообразователь — древесные опилки): *а* — шихта *1K*; *б* — шихта *2K* (см. табл. 2)

Рис. 4. Микроструктура керамики из кордиерита, синтезированного с добавкой глинозема, с порообразователем в виде карбамида (*a*) и древесных опилок (связка содержит 5 % глины) (б)

нической прочности керамики в состав шихты был добавлен НПА. Измерение σ_{cm} образцов (группа I) с порообразователем в виде древесных опилок показало, что при введении в шихту НПА осж повышается минимум на 10 %. Лучшим $\sigma_{\rm cm}$ обладают образцы, содержащие 0,5 % НПА. Однако введение даже 2 % НПА в шихты 1К с глиноземом (см. рис. 3, а) не позволяет достичь σ_{сж}, сопоставимого с σ_{сж} керамики из шихты 2К с бокситом (см. рис. 3, б). Введение НПА в количестве больше оптимального нецелесообразно, поскольку это может привести к образованию обособленных участков оксида, спекание в которых сопровождается фазовой трансформацией с уменьшением удельного объема и появлением пустот и микротрешин. Кроме того, несмотря на увеличивающийся выпуск НПА, он все еще остается дорогостоящим материалом.

Пористость керамики

Изучение микроструктуры керамики показало присутствие многочисленных пор, повторяющих форму порообразователя: округлых в сечении и удлиненных (рис. 4). Поры объединены в сообщающиеся каналы, что позволяет керамике иметь проницаемую пористость.

Применяемые древесные опилки имеют плотность 450 кг/м³ и насыпную плотность 116 кг/м³; у карбамида соответствующие показатели 1335 и 304 кг/м³, поэтому древесные опилки намного легче и, кроме того, более упруги, чем карбамид. Предотвратить саморазрушение прессовок из смеси с опилками удается с помощью предварительной обработки их органоминеральным связующим (КМЦ + порошок тонкомолотой глины). Увеличение содержания глины от 5 до 10 мас. % повышает плотность образцов при спекании, но уменьшает их общую пористость; при этом благодаря игольчатой форме опилок уровень проницаемой пористости керамики сохраняется.

Карбамид более плотный, не обладает такой сопротивляемостью упругим деформациям, какую имеет дерево, поэтому может быть введен в состав шихты в значительно большем количестве. Для получения бездефектной заготовки в состав шихты керамики не удается ввести более 2 мас. % опилок, а карбамид, как показали исследования, может быть введен в количестве более 10 мас. %. Проницаемая пористость с увеличением содержания карбамида возрастает, однако прочность получаемой керамики имеет максимальное значение при содержании карбамида 10 мас. %, а затем снижается (рис. 5). Края образцов после спекания с введением более 20 мас. % карбамида осыпаются. Поэтому дальнейшие исследования проводили с введением только 20 % карбамида.

У образцов керамики, спеченной при 1300 °C с упрочняющей добавкой НПА, наблюдается по-

Рис. 5. Зависимости пористости и прочности образцов керамики от содержания порообразователя в виде карбамида (*T*_{сп} = 1300 °С, 2 ч): ■ — общая пористость; ■ — проницаемая пористость

Рис. 6. Зависимость проницаемой пористости образцов керамики от содержания НПА в шихтах 1К с добавкой глинозема и 2К с добавкой боксита. Порообразователь — древесные опилки

вышение проницаемой пористости при содержании в шихте 1К для синтеза добавки глинозема. Проницаемая пористость образца из шихты 1К, содержащего 0,5 % НПА, достигает 25,5 %. Таким образом, введение НПА в шихту для спекания упрочняет пористую керамику (рис. 6), но при этом закономерно несколько снижает пористость, в том числе ее проницаемую составляющую. В образцах из бокситсодержащего сырья (шихта 2К) проницаемая пористость не достигает 20 %.

Наиболее эффективной добавкой для повышения σ_{cm} керамики с введением боксита в шихту 2К для синтеза оказалась добавка 0,5 мас. % НПА, однако проницаемая пористость в данном случае значительно снижается (до 18 %). Лучшей проницаемой пористостью обладают образцы с добавкой 1,0 и 1,5 % НПА. Это может быть объяснено фазовой трансформацией оксида алюминия, образующегося при окислении металла, не вошедшего в структуру кордиерита, с уменьшением удельного объема и образованием дополнительных пор. Исследование характера пористости спеченных материалов показало, что объем пор от 3 до 20 мкм по отношению к общему объему порового пространства у образцов с порообразователем в виде древесных опилок составляет 52-54 %, с карбамидом 60-63 %. Более мелкие поры (0,7-5,0 мкм) в образце с введением древесных опилок составляют 13-15 %, с введением карбамида — до 40 %.

Очень узкое распределение пор по размерам фиксируется в образце с введением карбамида в шихту (рис. 7, *a*) по сравнению с образцом с порообразователем в виде древесных опилок (рис. 7, *б*). Доминирующий максимум на гистограмме распределения пор (см. рис. 7, *a*) лежит

Рис. 7. Распределение пор по размерам в образцах пористой кордиеритовой керамики с порообразователем в виде 20 мас. % карбамида с игольчатыми кристаллами (*a*) и 2 мас. % древесных опилок (*б*); *T*_{сп} = 1270 °С

в диапазоне от 1 до 15 мкм и имеет вершину при 5-6 мкм. В объеме порового пространства этого образца фиксируются также поры размерами 10⁻³-10⁻² мкм, т. е. поры наноразмера (рис. 8). Видимо, благодаря наличию пор микро- и наноразмера образец с карбамидом в исходной смеси обладает повышенной проницаемой пористостью (до 40 %). В целом можно отметить, что образцы с порообразователем в виде карбамида отличаются более узким распределением пор по размерам, бо́льшим содержанием мезо- и микропор и присутствием пор нанодиапазона. Это можно объяснить достаточно легким делением (расщеплением) игольчатых кристаллов на более узкие фрагменты.

ЗАКЛЮЧЕНИЕ

Установлено, что перспективным для формирования пор необходимого размера является порообразователь в виде как фракционированных древесных опилок, так и перекристаллизованного иглообразного карбамида. Применение разного вида порообразователей отражается на уровне прочности пористой кордиеритовой керамики: образцы с древесными опилками существенно менее прочны, чем с карбамидом. Причина этого, на наш взгляд, состоит в том, что на стадии формования упругие древесные опилки производят многочисленные дефекты в заготовке, в то время как заготовки с карбамидом, сформованные из органо-минерального гранулята на парафиновой основе, практически бездефектны и отличаются более высокой прочностью. Эффект упрочнения пористой керамики может быть достигнут также введением небольшого количества нанопорошка алюминия. При этом добавка в количестве до 2,0 мас. % существенно не влияет на пористость образцов, но имеет упрочняющее действие.

Библиографический список

1. *Avvakumov, E. G.* Role of acid-base interactions in synthesis of cordierite from talc and sillimanite group minerals / *E. G. Avvakumov, G. G. Lepezin, A. A. Gusev, O. B. Vinokourova //* Science of Sintering. — 2013. — Vol. 45. — P. 273–279.

2. **Stoyanova**, **D. D.** Cordierite-like catalyst supports based on clay materials / D. D. Stoyanova, D. Ch. Vladov, N. A. Kasabova, D. R. Mekhandzhiev // Kinet. Catal. — 2005. — Vol. 46, \mathbb{N} 4. — P. 609–612.

3. **Benhammou, A.** Tanouti. Influence of sintering temperature on the microstructural and mechanical properties of cordierite synthesized from andalusite and talc / *A. Benhammou, Y. El Hafiane, A. Abourriche* [et al.] // Mater. Lett. — 2016. — Vol. 172. — P. 198–201.

4. *Хабас, Т. А.* Низкотемпературный синтез кордиеритовой фазы в керамических массах из природного сырья / *Т. А. Хабас, В. И. Верещагин, Т. В. Вакалова* [и др.] // Новые огнеупоры. — 2002. — № 4. — С. 41–48.

Рис. 8. Интегральный объем пор в образце керамики из 80 мас. % синтезированного с глиноземом кордиерита (шихта *1K*) и 20 мас. % кристаллического карбамида; *T*_{сп} = 1270 °C

Применение обоих видов порообразователей с частицами удлиненной иглообразной формы обеспечивает образование воспроизводимой поровой структуры. Кроме того, при применении карбамида имеется возможность получения узкого распределения пор по размерам. И в том, и в другом случае есть свои сложности, обусловленные влиянием процесса спекания основного материала (кордиеритовой матрицы) и необходимостью контролированной подготовки порообразователя (карбамида). Для получения прочной высокопористой кордиеритовой керамики целесообразен более трудоемкий, но эффективный метод с использованием парафинового органо-минерального гранулята с перекристаллизованным карбамидом.

Khabas, T. A. Low-temperature synthesis of the cordierite phase in ceramic mixtures of natural raw materials / *T. A. Khabas, V. I. Vereshchagin, T. V. Vakalova* [et al.] // Refractories and Industrial Ceramics. — 2003. — Vol. 44, № 3. — P. 181–185.

5. **Al-Harbi**, **Omar A**. Fabrication and characterization of single phase cordierite honeycomb monolith with porous wall from natural raw materials as catalyst support / *Omar A. Al-Harbi*, *Cem Özgür*, *M. M. Khan //* Ceram. Int. -2015. - Vol. 41. - P. 3526-3532.

6. *Bing Zhang.* Preparation low dielectric constant material of cordierite with polyacrylamide gel method / *Bing Zhang, Chuanbao Cao, Hesun Zhu, Gguobao Li //* J. Mater. Sci. — 2005. — Vol. 40. — P. 1781–1783.

7. **Ye Li.** Properties of highly porous cordierite ceramic obtained by direct foaming and gelcasting method / Ye Li, Wei Cao, Lunlun Gong [et al.] // Ceram. Silik. — 2016. — Vol. 60, № 2. — P. 91–98.

8. **Вакалова, Т. В.** Теплоизоляционные керамические материалы с нанопористой структурой, изготовленные с использованием золосодержащих отходов ТЭЦ / *Т. В. Вакалова, Т. А. Хабас, И. Б. Ревва, И. А. Павлова //* Новые огнеупоры. — 2014. — № 12. — С. 6–11.

Vakalova, \overline{T} . **V.** Heat-insulating ceramics which have a nanoporous structure and are made with the use of ash-bearing wastes from power plants / T. V. Vakalova, T. A. Khabas, I. B. Revva, I. A. Pavlova // Refractories and Industrial Ceramics. — 2015. — Vol. 55, \mathbb{N} 6. — P. 505–510.

9. *Thomaidis, E.* Synthesis of cordieritic materials using raw kaolin, bauxite, serpentinite/olivinite and magnesite / *E. Thomaidis, G. Kostakis //* Ceram. Int. — 2015. — Vol. 41. — P. 9701–9707.

10. *Jianer Zhou*. Utilization of sepiolite in the synthesis of porous cordierite ceramics / *Jianer Zhou*, *Yingchao Dong, Stuart Hampshire, Guangyao Meng* // Applied Clay Science. — 2011. — Vol. 52. — P. 328–332.

11. *Gass, Sebastián E.* High temperature mechanical behavior of porous cordierite-based ceramic materials evaluated using 3-point bending / *Sebastián E. Gass, María Laura Sandoval, Mariano H. Taloua* [et al.] // Proc. Mater. Sci. — 2015. — Vol. 9. — P. 254–261.

12. *Ayala-Landeros, J. G.* Influence of corn flour as pore forming agent on porous ceramic material based mullite: morphology and mechanical properties / *J. G. Ayala-Landeros, V. Saucedo-Rivalcoba, S. Bribiesca-Vasquez* [et al.] // Science of Sintering. — 2016. — Vol. 48. — P. 29–39.

13. *Gregorova, Eva.* Porous ceramics prepared using poppy seed as a pore-forming agent / *Eva Gregorova, Willi Pabst* // Ceram. Int. — 2007. — Vol. 33. — P. 1385–1388.

14. Li, Ye. Effect of starch on sintering behavior for fabricating porous cordierite ceramic / Ye Li, Cao Wei, Gong Lunlun [et al.] // High Temp. Mater. Processes. — 2016. — Vol. 35, \mathbb{N} 9. — P. 955–961.

15. **Benhammou**, **A**. Effects of oil shale addition and sintering cycle on the microstructure and mechanical properties of porous cordierite-ceramic / A. Benhammou, Y. El Hafiane, A. Abourriche [et al.] // Ceram. Int. — 2014. — Vol. 40. — P. 8937–8944.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

16. *Jing, Liua.* Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports withaddition of dolomite / *Jing Liua, Yingchao Donga, Xinfa Dongc* [et al.] // J. Eur. Ceram. Soc. — 2016. — Vol. 36. — P. 1059–1071.

17. *Chuanbei, Liu.* Fabrication and characterization of porous cordierite ceramics prepared from ferrochromium slag / *Liu Chuanbei, Liu Laibao, Tana Kefeng* [et al.] // Ceram. Int. — 2016. — Vol. 42, № 1. Part A. — P. 734–742.

18. *Cheraitia, A.* Synthesis and characterization of microporous silica-alumina membranes / *A. Cheraitia, A. Ayral, A. Julbe* [et al.] // Journal of Porous Materials. — 2010. — Vol. 17, № 3. — P. 259–263.

19. *Qian, L.* Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials / *L. Qian, H. F. Zhang* // J. Chem. Technol. Biotechnol. — 2011. — Vol. 86, № 2. — P. 172–184.

20. *Vijayan, S.* Dispersion and setting of powder suspensions in concentrated aqueous urea solutions for the preparation of porous alumina ceramics with aligned pores / *S. Vijayan, R. Narasimman, K. Prabhakaran //* J. Am. Ceram. Soc. — 2013. — Vol. 96, № 9. — P. 2779–2784.

21. **Камышная, К. С.** Исследование процесса получения пор заданной конфигурации в керамике из диоксида циркония за счет направленной кристаллизации карбамида / К. С. Камышная, Т. А. Хабас // Новые огнеупоры. — 2016. — № 9.— С. 33–38.

Kamyshnaya, K. S. Study of preparation of prescribed pore configuration in zirconium dioxide ceramic due to carbamide directional solidification / K. S. Kamyshnaya, T. A. Khabas // Refractories and Industrial Ceramics. — 2017. — Vol. 57, № 5. — P. 490–495.

22. *Macchetta, A.* Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphenebased freeze-casting method / *A. Macchetta, I. G. Turner, C. R. Bowen //* Acta Biomaterialia. — 2009. — № 5. — P. 1319–1327.

Получено 29.01.18

© Т. А. Хабас, Т. В. Вакалова, К. С. Камышная, Е. В. Дьяконова, А. И. Черепанова, А. А. Бирюкова, 2018 г.