К. т. н. Г. С. Подгородецкий, к. т. н. Л. М. Аксельрод (🖂), Е. А. Агапов, Т. В. Ерохов, к. т. н. В. Б. Горбунов, К. А. Санкин

ФГАОУ ВО «НИТУ «МИСиС», Москва, Россия

УДК 666.762.11"401.7":66.041.456

СТОЙКОСТЬ ОГНЕУПОРОВ В СИСТЕМЕ Al₂O₃-Cr₂O₃ В УСЛОВИЯХ ЖИДКОФАЗНОГО ВОССТАНОВЛЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩИХ ТЕХНОГЕННЫХ ОТХОДОВ

Приведены результаты лабораторных исследований применимости огнеупоров в системе Al₂O₃-Cr₂O₃ в двухзонных печах барботажного типа при переработке широкого спектра железосодержащих материалов, включая техногенные отходы. Проведены лабораторные испытания стойкости огнеупоров в среде железистых расплавов. Промоделированы условия эксплуатации огнеупора в плавильной и восстановительной зонах печи барботажного типа. С использованием оптической микроскопии исследованы зоны и суммарная глубина взаимодействия тигля с расплавом на границе раздела расплав – огнеупорный тигель.

Ключевые слова: барботажная печь, жидкофазное восстановление, корундохромистый огнеупор, техногенные отходы, железистый расплав.

дна из важнейших проблем человечества — Онакопление большого количества техногенных отходов. Существующий уровень развития технологий переработки не позволяет экологически безопасно и экономически эффективно их перерабатывать. Наиболее перспективны пля переработки отходов термические методы. Основными химическими элементами, содержащимися в техногенных отходах, являются железо, кремний, кальций, углерод, а также большое количество других элементов: алюминия, хрома, магния, цинка, меди и т. д. Разрабатываемые технологии должны быть безотходными, позволяющими извлекать все полезные компоненты из отходов в товарные продукты, а также энерго- и экономически эффективными. Наиболее перспективной технологией, отвечающей предъявляемым требованиям, является переработка отходов в печах барботажного типа, работающих в режиме обработки жидкой шлаковой ванны кислородсодержащим дутьем. Известны работающие агрегаты подобного типа: российский Ромелт, зарубежные HiSmelt и Ausmelt, эксплуатируемые в черной и цветной металлургии. Преимущество процесса переработки отходов в печах барботажного типа — возможность полной комплексной переработки сырьевых материалов. Все потенциально полезные компоненты, по нашему мнению, можно перевести в товарные

> ⊠ Л. М. Аксельрод E-mail: axelrodlev@yandex.ru

продукты: металлический сплав, шлак, пригодный для изготовления строительных изделий, концентраты ряда цветных металлов, уловленные в системах газоочистки. При этом не образуется никаких вторичных отходов.

В сентябре 2017 г. на промышленной базе МК «Сталькрон» (г. Мценск) введена в эксплуатацию опытно-промышленная установка ПМ (процесс МИСиС) барботажного типа для отработки технологий переработки широкого спектра железосодержащих руд, концентратов и техногенных отходов. Общий вид установки показан на рис. 1. Агрегат имеет две рабочие зоны: плавильную, в которой загружаемые материалы расплавляются, и восстановительную, в которой происходит окончательное восстановление железа в расплав. Параллельно протекают процессы восстановления цветных металлов. Выпуск продуктов плавки осуществляется из копильника. На

Рис. 1. Общий вид установки ПМ

опытно-промышленной печи установлено пять фурм для продувки кислородом, воздухом, их смесью и природным газом. Разработка технологии выполнена в НИТУ «МИСиС» с участием специалистов ООО «Новые Металлургические Технологии». Первая пробная кампания подтвердила работоспособность этой конструкции. В ходе кампании выполнено тестирование всего комплекса оборудования в рабочем режиме и отработаны основные технологические процессы.

Важнейшим элементом конструкции агрегата ПМ является футеровка, и в первую очередь подины агрегата. Учитывая предназначение полупромышленной печи, на которой будут отработаны и проверены различные технологии, такие как газификация углей, производство ферросплавов, утилизация твердых бытовых отходов, переработка металлургических шлаков и шламов и т. д., необходимо иметь высокостойкий огнеупорный материал. Основные требования к огнеупорному материалу для подины полупромышленной печи ПМ: высокая коррозионная устойчивость к воздействию высокожелезистых шлаков (Fe_{обш} до 60 %) при рабочей температуре 1400-1600 °C и повышенная термостойкость. Наиболее часто для тяжелых условий работы в печах различного типа для высокотемпературной переработки материалов, таких как ферросплавные печи, агрегаты цветной металлургии, стекловаренные печи и т. д., рекомендованы корундохромоксидные или хромоксидокорундовые огнеупоры. В зарубежной технической литературе говорится о алюмохромоксидных (alumina-chromeoxide) или хромкорундовых (chromecorundum) огнеупорах [1-3].

Особенностью огнеупоров в системе Al₂O₃-Cr₂O₃ является то, что оба оксида обладают похожей кристаллической решеткой и, следовательно, имеют любое соотношение (рис. 2). Такое своеобразие позволяет подбирать огнеупор под конкретные условия эксплуатации, изменяя соотношение оксидов. Кроме того, в процессе спекания изделия, сформованные на гидравлических прессах, имеют практически одинаковую структуру, измеряемую в направлении, параллельном и перпендикулярном усилию прессования. Эти огнеупоры за счет структурных особенностей и фазового состава обладают хорошей коррозионной стойкостью, особенно в окислительной среде печи. Проявляется эффект подавления коррозии шлаком, в который переходит оксид хрома; вязкость шлака увеличивается и скорость растворения огнеупора в нем замедляется.

Причина, по которой Cr₂O₃-содержащие огнеупоры обладают хорошей коррозионной стойкостью в окислительной среде печи, связана с эффектом подавления коррозии под действием Cr₂O₃, который растворен в шлаке. Вязкость шлака увеличивается за счет растворенного Cr₂O₃, что приводит к замедлению скорости растворения. Если работа металлургического агрегата осуществляется непрерывно в течение длительного периода времени, условия эксплуатации печи становятся более жесткими.

Для проверки воздействия расплава железистого шлака были проведены лабораторные исследования с использованием тигельного метода в сочетании с петрографическим и рентгеноструктурным анализами зоны взаимодействия огнеупор - шлак. Из цельного огнеупора были выпилены тигли (рис. 3). Высота тигля 130 мм, сторона основания 100 мм. В центре тигля на глубину около 100 мм высверлено отверстие диаметром около 50 мм. Высокая твердость огнеупорного материала не позволила изготовить тигли с одинаковой геометрией полости тигля. Поэтому перед каждым экспериментом замеряли высоту отверстия для одинакового (по весу) заполнения полости расплавом шлака в процессе эксперимента и последующего сравнительного анализа глубины проникновения расплава в материал тигля.

Рис. 2. Фазовая диаграмма системы Al₂O₃-Cr₂O₃

Рис. 3. Корундохромоксидный тигель до испытаний

Плавку проводили в электропечи сопротивления (рис. 4). Образцы железосодержащих материалов устанавливали в полости огнеупорного тигля, который помещали во внутреннее пространство печи, и далее производили нагрев до 1500 °С со скоростью 7 °С/мин. После расплавления железосодержащего материала через верхнее отверстие лабораторной печи загружали дополнительную порцию этого материала для увеличения объема расплава в тигле. Навески материала для плавки одного типа сочетания (материал + окалина, материал + окалина + кокс, материал + пыль ДСП) в тиглях были для каждого одинаковыми. В качестве железосодержащего материала в лабораторных испытаниях использовали брикеты, изготовленные жесткой экструзией из техногенных отходов, предназначенных для дальнейшей переработки в опытнопромышленной печи ПМ.

Цель проведения исследований на лабораторной печи — моделирование условий работы огнеупора в обеих зонах опытно-промышленной установки для подтверждения правильности выбора огнеупорного материала. Для моделирования зоны плавления после нагрева и расплавления железосодержащих материалов расплав выдерживали в тигле (эксперименты № 4, 6, 8 и № 10, 12, 13) в течение 2 и 12 ч соответственно.

При моделировании зоны восстановления после расплавления на поверхность расплава дополнительно каждые 10 мин загружали отсев кокса, используемый в качестве восстановителя на опытно-промышленной установке. Объем загружаемого отсева кокса рассчитывали из стехиометрического соотношения железа и восстановителя для реакции прямого восстановления; при этом учитывали содержание двух- и трехвалентного железа в исходной шихте. После загрузки необходимого объема отсева кокса и выдержки в течение 30 мин тигель вместе с расплавом остывал в печи до комнатной температуры (эксперименты № 5, 7, 9). Далее питание отключали, и тигель вместе с расплавом остывал в печи до комнатной температуры.

Химический состав исходных железосодержащих материалов представлен в табл. 1, состав отсева кокса, мас. %: влага 9,4, зола 17,8, S 0,60, летучие 2,5, С $_{\phiикc}$ 79,1. Химический состав золы отсева кокса, мас. %: Fe₂O₃ 9,35, SiO₂ 49,44, Al₂O₃ 16,48, CaO 12,12, MgO 7,54, TiO₂ 0,46, MnO₂ 0,16, Na₂O 1,18, K₂O 1,20, BaO 0,20, NiO 0,03, CoO

Рис. 4. Схема лабораторной печи сопротивления: 1 — защитная сетка; 2 — огнеупорная крышка; 3 — хромитлантановые нагреватели; 4 — стальной лист; 5 — корундохромоксидный тигель; 6 — футеровка; 7 — железистый расплав; 8 — блок управления печью

0,21, Cr₂O₃ 0,05, ZnO 0,70, SrO 0,15, P₂O₅ 0,67, прочие 0,06. Пробы перед выдержкой отбирали после полного расплавления путем намораживания расплава на металлический пруток, а также после кристаллизации расплава в тигле. Результаты химического анализа отобранных проб представлены в табл. 2. Химический анализ был выполнен в лабораториях НОЦ «ИМТ» НИТУ «МИСиС» и ЗАО «МК «Сталькрон». Использовали спектральный, атомно-эмиссионный с индуктивно-связанной плазмой и химический методы анализа.

После выдержки образцов в лабораторной печи тигли разрезали по вертикальной оси. При визуальном обследовании распила огнеупорного тигля не отмечено изменений геометрии стенок и дна (эрозии). Визуально не удалось выявить также наличие и размеры зоны пропитки (рис. 5). Результаты химического анализа показали, что насыщение железистого расплава оксидом алюминия происходит вследствие химического взаимодействия расплава с материалом огнеупорного тигля и сопровождается проникновением расплава в огнеупор.

Изменения в корундохромоксидном огнеупоре исследовали в лаборатории центра коллективного пользования фонда «Сколково» - «Системы для микроскопии и анализа». Ко-

Таблица 1. Химический состав исходных железосодержащих материалов, мас. %

Номер эксперимента	Шихта	Fe _{общ}	Al_2O_3	CaO	K ₂ O	MgO	MnO	Na ₂ O	ZnO	SiO ₂	С	S
4, 5, 10 6, 7, 12 8, 9, 13	Прокатная окалина Пыль ЭСПЦ + от- ходы производства брикетов из прокат- ной окалины	50,1 25,0 47,7	1,30 2,68 1,23	8,57 7,45 7,11	0,58 2,13 1,10	0,60 1,59 1,05	0,57 1,44 1,08	0,36 1,80 0,98	0,72 14,37 4,12	5,40 9,03 6,33	3,97 6,01 3,73	0,21 0,43 0,23

Номер эксперимента	Проба	Fe _{общ}	SiO ₂	MgO	CaO	Al_2O_3	TiO ₂		
В зоне плавления									
4, 10	Перед выдержкой	57,5	5,6	2,2	4,6	5,5	0,11		
4	После кристаллизации	55,7	4,6	1,4	3,4	6,2	0,1		
10	-	51,1	6,0	1,1	3,9	14,4	0,06		
6, 12	Перед выдержкой	36,8	15,2	5,6	10,8	7,0	0,32		
6	После кристаллизации	33,6	15,05	4,5	10,0	7,6	0,31		
12		33,1	14,7	2,9	9,0	15,7	0,3		
8, 13	Перед выдержкой	48,8	8,0	2,2	6,1	7,0	0,15		
8	После кристаллизации	49,1	7,5	2,2	5,8	7,4	0,13		
13	-	48,2	6,1	1,3	5,5	16,0	0,09		
В зоне восстановления									
5	Перед выдержкой	55,8	5,28	2,2	5,0	5,5	0,12		
	После кристаллизации	48,1	8,2	2,2	4,8	6,1	0,12		
7	Перед выдержкой	32,8	14,5	7,8	10,0	6,9	0,33		
	После кристаллизации	10,2	25,5	5,6	17,7	9,3	0,45		
9	Перед выдержкой	50,4	6,8	2,8	6,2	5,2	0,13		
	После кристаллизации	14,9	14,9	1,3	15	25,7	0,22		

Таблица 2. Химический состав проб расплава при моделировании в зонах опытно-промышленной установки, мас. %

личество характерных зон на границе раздела расплав – огнеупорный тигель после проведения теста на шлакоустойчивость, мощность

Рис. 5. Разрезы тиглей после расплавления (окалина) (*a*) и восстановления (окалина + коксик) (б)

Рис. 6. Срезы тигля в эксперименте № 4 с видимой зональной пропиткой (слева) и выбор участков для петрографического исследования (справа)

каждой зоны и суммарную глубину взаимодействия тигля с расплавом на границе раздела расплав - огнеупорный тигель определяли

с применением оптической микроскопии. Отполированные образцы помещали на приборный столик оптического микроскопа Leica DM LM 2 и производили съемку интересуемой области при разном увеличении. Зональность и мощность зон определяли на участках среза образца тигля (рис. 6), микроструктуру зон — с применением оптической микроскопии (рис. 7). Образцы огнеупора после теста на шлакоустойчивость имеют четыре визуально различимые зоны: зону шлака (шлаковая корочка), зону проникновения компонентов шлака, зону пропитки и взаимодействия и наименее измененную зону.

1. Шлаковая корочка состоит из ромбических кристаллов, предположительно шпинелида, между которыми наблюдаются дендритовидные, скелетные включения, предположительно вюстита, редко бадделеит и силикатная матрица, в которую погружены все кристаллы; в образцах с участием восстановителя наблюдается металлическое железо. Поры в шлаке пузырькового типа, округлой формы. На контакте с огнеупором наблюдается уплотненный слой, состоящий из кристаллов, предположительно сложного шпинелида.

2. Зона проникновения компонентов шлака выражена в присутствии в огнеупоре на контакте с шлаком локальных участков, содержащих

Рис. 7. Микроструктура участков образца в эксперименте № 4 при 50-кратном (*a*, *e*, *d*) и 200-кратном увеличении (*б*, *e*, *e*): *a* — зона проникновения компонентов шлака на контакте шлака с материалом огнеупора; *б* — шлак над зоной пропитки; *в*, *г* — зона пропитки; *д*, *e* — наименее измененная зона

сложный шпинелид, аналогичный сложному шпинелиду в шлаке.

3. Зона пропитки и взаимодействия фаз огнеупора с компонентами шлака имеет различную мощность проникновения. Она выражена в разложении зерен, частичном выносе бадделеита за пределы зерен в шлак, в уплотнении за счет спекания, фазообразования, взаимодействия муллита с корундом и примесями тонкомолотой составляющей. Поры двух видов: отдельные, крупные, неправильной формы и мелкие, закрытые. Переход между зонами пропитки и наименее измененной неявный, размытый, визуально плохо различимый.

4. Наименее измененная зона аналогична образцу до теста.

Анализ распределения химических элементов на поверхности аншлифа с учетом структурных составляющих проводили в перпендикулярном сечении образцов в области взаимодействия расплава и огнеупорного тигля. Количество характерных зон, их мощность определены методом рентгенофлуоресцентной спектроскопии (рентгенофлуоресцентный спектрометр ORBIS РС фирмы EDAX) на основе сопоставления данных об элементном составе в каждой точке и уровня сигнала на детекторе рентгеновского излучения. Пример карты распределения кремния для анализируемого участка поверхности образца в эксперименте № 4 показан на рис. 8. Исследовали распределение концентраций следующих элементов: Mg, Al, Si, P, Fe, Zr, S, K, Ca, Ti, Cr и Mn.

Анализ микроструктуры зон, их количества и мощности, распределения химических элементов в зонах по сечению образцов в области взаимодействия расплава и огнеупорного тигля выполнен с помощью растровой электронной микроскопии (РЭМ) с энергодисперсионным микроанализом в режиме MAPS и численного анализа данных РЭМ. Методом РЭМ предварительно просматривали образец под небольшим увеличением (×85-×150) для оценки однородности распределения объектов, которые необходимо измерить и выявить наличие зонального строения. Для съемки использовали детектор CBS, позволяющий получить изображение поверхности аншлифа в режиме контраста, зависящего от атомного номера элемента в Периодической системе элементов Д. И. Менделеева. В результате неметаллические включения, поры и трещины отображаются черным цветом, а включения, содержащие химические элементы с высоким атомным номером (Z > 36), — белым. В режиме MAPS на двулучевом растровом электронно-ионном микроскопе FEI Versa 3D проводили картирование микроструктуры обла-

Рис. 8. Пример карты распределения кремния для анализируемого участка поверхности образца в эксперименте № 4

сти в исследуемой зоне аншлифа. Полученную карту использовали для дальнейшей детализации и выявления характерных структурных составляющих (зон). Пример такой карты показан на рис. 9 и 10.

Рис. 9. Вид аншлифа образца в эксперименте № 4 после теста (слева) и выбранная на нем для картирования область интереса, полученная по технологии MAPS (справа)

Рис. 10. Микроструктура участка образца в эксперименте № 4 после теста на шлакоустойчивость. РЭМ, технология MAPS. Граница: — шлака и огнеупора; — — зоны проникновения компонентов шлака и зоны пропитки; — верхней части зоны пропитки, содержащей бадделеит, с нижней частью; — зоны пропитки с наименее измененной зоной

Далее проводили испытания в каждой выделенной зоне образца методом РЭМ с использованием энергодисперсионного спектрометра (РЭМ/ЭДС) для определения минерального и химического составов и характерных особенностей в каждой зоне, а также для построения карты распределения химических элементов по площади областей интереса на поверхности аншлифов. В табл. З представлен размер микронеоднородностей структуры (мощность, глубина распространения зон) перпендикулярно границе раздела расплав – тигель в образцах. Из табл. З видно, что при выдержке в течение первых 2 ч максимальная скорость пропитки составляет 2,75 мм/ч, при выдержке в течение 12 ч 0,67 мм. Наибольшая скорость пропитки у материала с повышенным содержанием цинка. Скорость пропитки огнеупора в режиме восстановления (зона восстановления) приблизительно соответствует скорости пропитки в условиях плавильной зоны опытно-промышленной печи ПМ.

ЗАКЛЮЧЕНИЕ

1. Взаимодействие корундохромоксидных огнеупоров с расплавом железистого шлака начинается с пропитки по тонкомолотой составляющей посредством твердофазной диффузии ионов кремния, кальция, железа с образованием сложных силикатов между кристаллами – частицами тонкомолотой составляющей.

2. В шлак выносятся оксиды хрома и алюминия из огнеупора с образованием сложных шпинелидов.

3. Во всех образцах независимо от состава железосодержащего материала и среды эксперимента происходят идентичные процессы формирования зон и фазообразования. С увеличением длительности эксперимента пропитка глубже.

4. Участок взаимодействия расплава железосодержащего шлака с корундохромоксидным огнеупором включает четыре зоны: шлаковую корочку, зону проникновения компонентов шлака, зону пропитки и взаимодействия, которая аналогична по микроструктуре зоне проникновения компонентов шлака, но не содержит слож-

Таблица 3. Размер микронеоднородностей структуры образца (мощность, глубина распространения зон) перпендикулярно границе раздела расплав – тигель, мм

Номер эксперимента	Режим испытаний	Зона проникновения компонентов шлака	Верх пропитки	Низ пропитки
4	Выдержка в течение 2 ч	0,1-0,5	1,8–3,2	2,5-4,3
6		0,1-3,0	2,0-3,8	3,3–5,5
8		0,1-1,7	2,0-2,3	2,0-4,6
10	Выдержка в течение 12 ч	0,1-1,0	1,6–4,5	4,2-8,0
12	-	0,1-0,8	2,2-4,0	4,8-8,0
13		0,1-0,5	2,6-5,0	2,7-8,0
5	Режим восстановления	0,1-1,0	1,2–3,5	1,8–4,0
7		0,3–2,8	2,2-4,5	4,8-6,1
9		0,3-1,4	1,8-3,0	3,2-6,0

ного шпинелида из шлака, и наименее измененную зону, аналогичную по структуре и фазовому составу огнеупору до испытаний.

5. Присутствие цинка в шлаке увеличивает скорость пропитки. Цинк, как правило, входит в состав сложных шпинелидов, фиксируемых в шлаке, на границе с огнеупором и в приповерхностной зоне проникновения шлака в структуру огнеупора.

6. Выявлено, что увеличение длительности пропитки от 2 до 12 ч приводит к снижению скорости пропитки более чем в 4 раза. Т. е. процессы пропитки носят ограниченный по времени характер. Это означает, что данный вид огнеупоров может быть рекомендован для дальнейшего использования в опытно-промышленном агрегате ПМ.

7. В рамках дальнейшей отработки технологии переработки различных видов материалов на печи барботажного типа, включая техногенные отходы, предстоит продолжение испытаний огнеупорных материалов для перспективности оценки их использования в промышленных агрегатах, в том числе с учетом качества атмосферы в тепловом агрегате.

Библиографический список

1. **Dietrich**, **M**. Chrome corundum: an alternative to isostatically pressed products / M. Dietrich, S. Postrach // RHI Bulletin. — 2013. — N $_{\rm e}$ 2. — P. 27–30.

2. *Yoshimi, Yasutaka.* Wear of Al₂O₃-Cr₂O₃ bricks in waste smelting rotary kiln / *Yasutaka Yoshimi* // Journal of the Technical Association of Refractories. — 2016. — Vol. 36, № 3. — P. 16–186.

3. **Zhao, Shixian**. Thermodynamic evaluation of Cr₂O₃-Al₂O₃ refractory corrosion by smelting reduction ironmaking slag / Shixian Zhao, Binli Cai, Pengtao Li [et al.] // China's Refractories. — 2015. — Vol. 24, № 2. — P. 6–10.

Получено 28.02.18 © Г.С.Подгородецкий, Л.М.Аксельрод, Е.А.Агапов, Т.В.Ерохов, В.Б.Горбунов, К.А.Санкин, 2018 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

www.icc7.com.br