PHASE FORMATION DURING THE COMPOSITE B4C‒SiC‒ Si(Al) Reactive Sintering
https://doi.org/10.17073/1683-4518-2017-12-42-48
Abstract
The phase formation was regarded during the reactive sintering of the boron carbide materials in the presence of the silicon or alumina melts or of the silicon-aluminum mixture. The inter-phase interaction was investigated, the melting (decomposition) temperatures as well as crystallographic data on the phases in the regarded systems were shown. The methods of the Si and Al4C3 content reducing in the reactivesintered material were discussed as these substances negatively affect the physical and chemical properties of the material.
About the Authors
S. S. OrdanianRussian Federation
D. D. Nesmelov
Russian Federation
A. I. Ovsienko
Russian Federation
References
1. Suri, A. K. Synthesis and consolidation of boron carbide: a review / A. K. Suri, C. Subramanian, J. K. Sonber [et al.] // Int. Mater. Rev. ― 2010. ― Vol. 55, № 1. ― P. 4‒40. http://dx.doi.org/10.1179/095066009X12506721665211
2. Thevenot, F. Boron carbide ― a comprehensive review / F. Thevenot // J. Europ. Ceram. Soc. ― 1990. ― Vol. 6, № 4. ― P. 205‒225. https://doi.org/10.1016/09552219(90)90048-K
3. Андриевский Р. А. Микрои наноразмерный карбид бора: синтез, структура и свойства / Р. А. Андриевский // Успехи химии. ― 2012. ― Т. 81, № 6. ― С. 549‒559. [Andrievski, R. A. Microandnanosizedboroncarbide: synthesis, structure and properties / R. A. Andrievski // Russ. Chem. Rev. ― 2012. ― Vol. 81, № 6. ― P. 549.] https://doi.org/10.1070/RC2012v081n06ABEH004287
4. Sciti, D. Sintering and densification mechanisms of ultra-high temperature ceramics / D. Sciti, L. Silvestroni,V. Medri [et al.] // Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications. ― 2014. ― С. 112‒143. https://onlinelibrary.wiley.com/doi/10.1002/9781118700853.ch6/summary
5. Гнесин, Г. Г. Карбидокремниевые материалы / Г. Г. Гнесин. ― М. : Металлургия, 1977. ― С. 373‒376.
6. Dariel, M. P. Reaction bonded boron carbide: recent developments / M. P. Dariel, N. Frage // Advancesin Applied Ceramics. ― 2012. ― Vol. 111, № 5/6. ― С. 301‒310. http://dx.doi.org/10.1179/1743676111Y.0000000078
7. Thuault, A. Processing of reaction-bonded B4C‒ SiC composites in a single-mode microwave cavity / Thuault, S. Marinel, E. Savary [et al.] // Ceram. Int. ― 2013. ― Vol. 39, № 2. ― Р. 1215‒1219. https://doi. org/10.1016/j.ceramint.2012.07.047
8. Пат. 7332221 США. Boron carbide composite bodies, and methods for making same / Aghajanian M. K., McCormick A. L., Morgan B. N. [et al.]. ― 2008. https://ww.google.com/patents/US7332221
9. Заяв. пат. 13/752,135 США. Boron-silicon-carbon ceramic materials and method of making / Anderson F. E., McNerney K. R., Brazil S. M. ― 2013. https://www.google.com/patents/US20130168905
10. Zhou, Y. Microstructure and mechanical properties of reaction bonded B4C‒SiC composites: The effect of polycarbosilane addition / Y. Zhou, D. Ni, Y. Kan [et al.] // Ceram. Int. ― 2017. ― Vol. 43, № 8. ― P. 5887‒5895. https://doi.org/10.1016/j.ceramint.2017.01.066
11. Пат. 2440956 РФ. Способ изготовления керамического бронематериала на основе карбида кремния и карбида бора и керамический бронематериал на основе карбида кремния и карбида бора / Харченко Е. Ф., Анискович В. А., Ленский В. В., Гавриков И. С., Быков В. А. ― 2011. http://www1.fips.ru/fips_servl/fips_servlet?DB=RUPAT&DocNumber=02440956
12. Пат. 2621241 РФ. Наноструктурированный композиционный материал на основе карбида бора и способ его получения / Овсиенко А. И., Румянцев В. И., Фищев В. Н., Орданьян С. С. ― 2017. http://www1.fips. ru/wps/portal/IPS_Ru#1498767399125
13. Halverson, D. C. Processing of boron carbidealuminum composites / D. C. Halverson, A. J. Pyzik, I.A. Aksay [et al.] // J. Am. Ceram. Soc. ― 1989. ― Vol. 72, № 5. ― P. 775‒780. http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1989.tb06216.x/full
14. Пат. 4605440 США. Boron-carbide-aluminum and boron-carbide-reactive metal cermets / Halverson D. C., Pyzik A. J., Aksay I. A. ― 1986. https://www.google.com/patents/US4605440
15. Пат. 5508120 США. Boron carbide cermet structural materials with high flexure strength at elevated temperatures / Pyzik A. J., Fuller S. M., Beaman D. R. ― 1996. https://www.google.com/patents/US5508120
16. Пат. 7160627 США. Boron containing ceramicaluminum metal composite and method to form the composite. ― Pyzik A. J., Deshmukh U. V., Shinkel N. M., Allen T. L. ― 2007. https://www.google.com/patents/US7160627
17. Пат. 8186565 США. Method of bonding aluminumboron-carbon composites / Pyzik A. J., Newman R. A. ― 2012. https://www.google.com/patents/US8186565
18. Frage, N. Manufacturing B4C‒(Al, Si) composite materials by metal alloy infiltration / N. Frage, L. Levin,N. Frumin [et al.] // Journal of Materials Processing Technology. ― 2003. ― Vol. 143. ― P. 486‒490. https://doi.org/10.1016/S0924-0136(03)00301-7
19. Korniyenko, K. Refractory metal systems: phase diagrams, crystallographic and thermodynamic data. Ch. Boron‒Carbon‒Silicon / K. Korniyenko. ― Springer Berlin Heidelberg, 2009. ― P. 499‒534. https://link.springer.com/chapter/10.1007/978-3-540-88053-0_21
20. Rogl, P. F. The B-rich side of the B‒C phase diagram / P. F. Rogl, J. Vrestal, T. Tanaka [et al.] // Calphad. ― 2014. ― Vol. 44. ― P. 3‒9. https://doi.org/10.1016/j.calphad.2013.07.016
21. Andrievski, R. A. Superhard materials based on nanostructured high-melting point compounds: achievements and perspectives / R. A. Andrievski // Int. J. Refract. Met. Hard Mater. ― 2001. ― Vol. 19, № 4. ― P. 447‒452. https://doi.org/10.1016/S0263-4368(01)00023-3
22. Gao, F. Hardness of covalent crystals / F. Gao, J. He, E. Wu [et al.] // Phys. Rev. Lett. ― 2003. ― Vol. 91, № 1. ― P. 015502. https://doi.org/10.1103/PhysRevLett.91.015502
23. Волков, А. И. Большой химический справочник / А. И. Волков, И. М. Жарский. ― Минск : Современная школа, 2005. ― 608 с.
24. Алексеев, Г. А. Свойства, получение и применение тугоплавких соединений : справочник / Г. А. Алексеев, Г. А, Бовкун, А. С. Болгар [и др.] ; под ред. Т. Я. Косолаповой. ― М. : Металлургия, 1986. ― 928 с.
25. Snead, L. L. Handbook of SiC properties for fuel performance modeling / L. L. Snead, T. Nozawa, Y. Katoh [et al.] // J. Nucl. Mater. ― 2007. ― Vol. 371, № 1. ― P. 329‒377. https://doi.org/10.1016/j.jnucmat.2007.05.016
26. Cline, C. F. A new silicon boride, SiB4 / C. F. Cline, D. E. Sands // Nature. ― 1960. ― Vol. 185, № 4711. ― P. 456. https://www.nature.com/nature/journal/v185/n4711/abs/185456a0.html
27. De Azevedo, M. G. The high temperature ‒ high pressure sintering of diamond‒Cu‒Si‒B composite / M. G. De Azevedo, A. Potemkin, A. L. D. Skury [et al.] // Diamond Relat. Mater. ― 2001. ― Vol. 10, № 9. ― P. 1607‒1611. https://doi.org/10.1016/S0925-9635(01)00418-6
28. Cline, C. F. An investigation of the compound silicon boride (SiB6) / C. F. Cline // J. Electrochem. Soc. ― 1959. ― Vol. 106, № 4. ― P. 322‒325. http://jes.ecsdl.org/content/106/4/322.short
29. Hayun, S. The morphology of ceramic phases in BxC‒ SiC‒Si infiltrated composites / S. Hayun, N. Frage, M. P. Dariel // J. Solid State Chem. ― 2006. ― Vol. 179, №. 9. ― Р. 2875‒2879. https://doi.org/10.1016/j.jssc.2006.01.031
30. Chen, Z. F. Formation and sintering mechanisms of reaction bonded silicon carbide ‒ boron carbide composites / Z. F. Chen, Y. C. Su, Y. B. Cheng // Key Eng. Mater. ― 2007. ― Vol. 352. ― P. 207‒212. https://www. scientific.net/KEM.352.207
31. Hayun, S. Static and dynamic mechanical properties of infiltrated B4C‒Si composites / S. Hayun, D. Rittel, N. Frage [et al.] // Mater. Sci. Eng., A. ― 2008. ― Vol. 487, №. 1. ― P. 405‒409. https://doi.org/10.1016/j.msea.2007.11.062
32. Grytsiv, A. Refractory metal systems: phase diagrams, crystallographic and thermodynamic data. Ch. Aluminium ‒ boron ‒ carbon / A. Grytsiv, P. Rogl. ― Springer Berlin Heidelberg, 2009. ― P. 10‒38. https://link.springer.com/chapter/10.1007%2F978-3-540-88053-0_3
33. Grytsiv, A. Al‒B‒C (Aluminum–Boron–Carbon) // Light Metal Systems. Part 1: Selected Systems from Ag‒ Al‒Cu to Al‒Cu‒Er / A. Grytsiv, P. Rogl. ― Springer Berlin Heidelberg, 2004. ― P. 29‒51. https://link.springer.com/chapter/10.1007%2F10915943_6?LI=true
34. Stratiichuk, D. A. Phase formation in the Al‒BC ternary system at high pressures and temperatures / D. A. Stratiichuk, M. A. Tonkoshkura, N. N. Belyavina [et al.] // Journal of Superhard Materials. ― 2011. ― Vol. 33, № 5. ― P. 285. https://link.springer.com/article/10.3103%2FS1063457611050017?LI=true
35. Pyzik, A. J. Al‒B‒C phase development and effects on mechanical properties of B4C/Al ‒ derived composites / A. J. Pyzik, D. R. Beaman // J. Am. Ceram. Soc. ― 1995. ―Vol. 78, № 2. ― P. 305‒312. http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1995.tb08801.x/full
36. Salamone, S. Microstructure and phase relationship of aluminum boride/carbide composites / S. Salamone, M. Aghajanian, S. E. Horner [et al.] // Mechanical Properties and Performance of Engineering Ceramics and Composites XI: Ceramic Engineering and Science Proceedings. ― 2017. ― Vol. 37, № 2. ― С. 183. https://books.google.ru/books?hl=ru&lr=&id=DXqxDQAAQBAJ&oi=fnd&pg=PA183&dq=Microstructure+and+Phase+Relationship+of+Aluminum+Boride/Carbide&ots=4Up4nXId4z&sig=ue3kHObSffVHeQYAfcE9DgbD2Xk&redir_esc=y#v=onepage&q=Microstructure%20and%20Phase%20Relationship%20of%20Aluminum%20Boride%2FCarbide&f=false
37. Lee, S. H. Al3BC3 powder: processing and synthetic mechanism / S. H. Lee, J. S. Lee, H. Tanaka [et al.] // J. Am. Ceram. Soc. ― 2009. ― Vol. 92, №. 12. ― P. 2831‒2837. http://onlinelibrary.wiley.com/doi/10.1111/j.15512916.2009.03292.x/full
38. Lee, S. H. Thermal stability of Al3BC3 / S. H. Lee, H. Tanaka // J. Am. Ceram. Soc. ― 2009. ― Vol. 92, № 9. ―P. 2172‒2174. http://onlinelibrary.wiley.com/doi/10.1111/j.1551-2916.2009.03171.x/full
39. Zhang, X. F. Secondary phases in hot pressed aluminum boron carbon–silicon carbide / X. F. Zhang, M. E. Sixta, L. C. Jonghe // J. Am. Ceram. Soc. ― 2001. ― Vol. 84, № 4. ― P. 813‒820. http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.2001.tb00746.x/full
40. Ivanovskii, A. L. Hardness of hexagonal AlB2-like diborides of s, p and d metals from semi-empirical estimations / A. L. Ivanovskii // Int. J. Refract. Met. Hard Mater. ― 2013. ― Vol. 36. ― P. 179‒182. https://doi.org/10.1016/j.ijrmhm.2012.08.013
41. Шульженко, А. А. Соединение AlB40C4 ― новый сверхтвердый материал / Породоразрушающий и металлообрабатывающий инструмент ― техника и технология его изготовления и применения : сб. науч. тр. Вып. 5 / А. А. Шульженко, А. Н. Соколов. ― Киев : ИСМ им. В. Н. Бакуля НАН Украины, 2003. ― С. 124‒127.
42. Besterci, M. Mechanical properties of phases in Al‒ Al4C3 mechanically alloyed material measured by depth sensing indentation technique / M. Besterci, L. Pešek, P. Zubko [et al.] // Mater. Lett. ― 2005. ― Vol. 59, № 16. ― P. 1971‒1975. https://doi.org/10.1016/j.matlet.2005.01.011
43. Novikov, N. V. On the achievements of Bakul Institute for superhard materials, National academy of sciences of Ukraine, in the field of synthesis and sintering of superhard materials over the past 50 years of the Institute’s activities / N. V. Novikov // Journal of Superhard Materials. ― 2011. ― Vol. 33, № 3. ― P. 147‒150. https://link.springer.com/article/10.3103%2FS1063457611030014?LI=true
44. Lukas, H. L. Refractory metal systems: phase diagrams, crystallographic and thermodynamic data. Ch. Aluminium–boron–silicon / H. L. Lukas. ― Springer Berlin Heidelberg, 2009. ― С. 50‒62. https://link.springer.com/chapter/10.1007/978-3-540-88053-0_5
45. Gröbner, J. Thermodynamic calculation of the ternary system Al‒Si‒C / J. Gröbner, H. L. Lukas, F. Aldinger // Calphad. ― 1996. ― Vol. 20, № 2. ― P. 247‒254. https://doi.org/10.1016/S0364-5916(96)00027-2
46. Yokokawa, H. Phase relations associated with the aluminum blast furnace: aluminum oxycarbide melts and Al‒CX (X = Fe, Si) liquid alloys / H. Yokokawa, M. Fujishige, S. Ujiie [et al.] // Metall. Mater. Trans. B. ― 1987. ― Vol. 18, № 2. ― P. 433‒444. https://link.springer.com/article/10.1007%2FBF02656164?LI=true
47. Murray, J. L. The Al‒Si (aluminum‒silicon) system /J. L. Murray, A. J. McAlister // J. Phase Equilib. ― 1984. ― Vol. 5, № 1. ― P. 74‒84. https://link.springer.com/article/10.1007%2FBF02868729?LI=true
48. Sun, L. Structural, mechanical, thermal and electronic properties of novel ternary carbide Al4Si2C5 under high pressure by DFT calculation / L. Sun, Y. Gao, K. Yoshida [et al.] // Int. J. Mod. Phys. B. ― 2016. ― Vol. 31, № 3. ― P. 1750012-1‒1750012-17. http://www.worldscientific.com/doi/abs/10.1142/S0217979217500126
49. Inoue, K. Synthesis of Al4SiC4 / K. Inoue, A. Yamaguchi // J. Am. Ceram. Soc. ― 2003. ― Vol. 86, № 6. ― P. 1028‒1030. http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.2003.tb03414.x/full
50. Gaballa, O. Formation, densification, and selected mechanical properties of hot pressed Al4SiC4, Al4SiC4 with 30 vol. % WC, and Al4SiC4 with 30 vol. % TiC / O. Gaballa, B. Cook, A. Russell // Ceram. Int. ― 2011. ― Vol. 37, № 8. ― P. 3117‒3121. https://doi.org/10.1016/j.ceramint.2011.05.050
51. Trujillo-Vázquez, E. Elimination of Al4C3 phase in Al/ SiCp composites by HYSYCVD / E. Trujillo-Vázquez, M. I. Pech-Canul, L. A. González [et al.] // Mater. Sci. Forum. ― Trans. Tech. Publications. ― 2013. ― Vol. 755. ― P. 9‒14. https://www.scientific.net/MSF.755.9
Supplementary files
For citation: Ordanian S.S., Nesmelov D.D., Ovsienko A.I. PHASE FORMATION DURING THE COMPOSITE B4C‒SiC‒ Si(Al) Reactive Sintering. NOVYE OGNEUPORY (NEW REFRACTORIES). 2017;(12):42-48. https://doi.org/10.17073/1683-4518-2017-12-42-48
Refbacks
- There are currently no refbacks.