SLAG–REFRACTORY INTERACTIONS DURING ILMENITE SMELTING: THERMODYNAMIC SIMULATION AND EXPERIMENTAL DATA
https://doi.org/10.17073/1683-4518-2018-3-28-33
Abstract
In this study, we aimed to select an electric furnace titanium slag from Panzhihua Iron and Steel (wt. [TiO2] = 80 %) and four kinds of commonly used refractory aggregates (i.e., corundum castable, burning magnesium brick, SiC castable, and magnesia carbon brick). The corrosion of the titanium slag with refractory was calculated using the FactSage software. The experiment was carried out in the electric furnace on the basis the calculation results. Meanwhile, thermodynamic calculation results showed that the SiC castable and titanium slag formed TiC with high melting point, which can prevent refractory material from further penetrating the sample and exhibits good erosion resistance. Composed of eroded corundum aggregates, the new liquid slag phase eroded easily. The following order of different refractory materials for titanium slag erosion resistance from good to bad was observed: SiC castable → magnesia carbon brick → magnesite brick → corundum. The theoretical calculation fits well with experimental results. Ill. 5. Ref. 14. Tab. 2.
About the Authors
Huang JunChina
Qian Xing
China
Li Xiaodong
China
Liu Pengsheng
China
Zhang Jinzhu
China
References
1. Du, H. G. Microstructure analysis of iron corrosion lining of titanium bearing blast furnace slag / H. G. Du, G. T. Xu, R. S. Diao // Iron Steel Vanadium Titanium. ― 2002. ― Vol. 6, № 2.
2. Du, H. G. Study on erosion of blast furnace slag by blast furnace slag / H. G. Du [et al.] // Iron Steel. ― 2003. ― Vol. 4, № 1. ― P. 56‒59.
3. Li, J. Study on the mechanism of slag corrosion and improvement of material properties of blast furnace in Panzhihua Iron & Steel Co. / J. Li. ― 2002.
4. Liu, Q.-C. Corrosion resistance of MgO‒C refractor y to smelting reduction slag containing titania / Q.-C. Liu[et al.] // British Corrosion Journal. ― 2002. ― Vol. 37, № 3. ― Р. 231‒234.
5. Qin, J. Melting reduction furnace lining erosion cause analysis and improvement measures / J. Qin [et al.] // Refractory Material. ― 2013. ― Vol. 4, № 2. ― Р. 152‒154.
6. Garbers-Craig, A. M. Slag-refractory interactions during the smelting of ilmenite / A. M. Garbers-Craig, P. C. Pistorius // South African Journal of Science. ― 2006. ― Vol. 102, № 11/12. ― Р. 575‒581.
7. Sang, S. B. Discussion on the furnace lining material of high titanium pellet melting furnace / S. B. Sang [et al.] // Silicate Bulletin. ― 2014. ― Vol. 6, № 4.
8. Chen, Y. Slag line dissolution of MgO refractory / Y. Chen, G. A. Brooks, S. A. Nightingale // Canadian Metallurgical Quarterly. ― 2005. ― Vol. 8, № 3. ― Р. 323‒330.
9. Hu, W. Different matrix combined with the research on corrosion resistance of MgO‒C brick for slag / W. Hu [et al.] // Silicate Bulletin. ― 2011. ― Vol. 6, № 1.
10. Fan, X. L. Slag resistance of MgO‒C brick with different carbon content / X. L. Fan [et al.] // Journal of Wuhan University of Science and Technology. ― 2009. ― Vol. 5, № 4. ― P. 394‒398.
11. Li, H. C. Effect of electromagnetic field on corrosion resistance of MgO‒C refractories / H. C. Li [et al.] // Journal of silicate. ― 2011. ― Vol. 6, № 3. ― P. 452‒457.
12. Muñoz, V. Slag corrosion of alumina-magnesia-carbon refractory bricks: еxperimental data and thermodynamic simulation / V. Muñoz, S. Camelli, A. G. T. Martinez // Ceram. Int. ― 2017. ― Vol. 43, № 5. ― Р. 4562‒4569.
13. Chen, Z. Y. Analysis of the corrosion of MgO‒CaO materials by the phase diagram / Z. Y. Chen // J. Metals. ― 1983. ― Vol. 8, № 2. ― P. 62‒69.
14. Berjonneau, J. The development of a thermodynamic model for Al2O3 ‒MgO refractory castable corrosion by secondary metallurgy steel ladle slags / J. Berjonneau, P. P r igent , J. Poi r ier // C er a m. I nt . ― 20 0 9. ― Vol. 35, № 2. ― Р. 623‒635.
Supplementary files
For citation: Jun H., Xing Q., Xiaodong L., Pengsheng L., Jinzhu Z. SLAG–REFRACTORY INTERACTIONS DURING ILMENITE SMELTING: THERMODYNAMIC SIMULATION AND EXPERIMENTAL DATA. NOVYE OGNEUPORY (NEW REFRACTORIES). 2018;(3):28-33. https://doi.org/10.17073/1683-4518-2018-3-28-33
Refbacks
- There are currently no refbacks.