WELL-DISPERSION OF CARBON NANOTUBES FOR THE GREATLY ENHANCED MECHANICAL PROPERTIES OF ALUMINA-BASED COMPOSITES
https://doi.org/10.17073/1683-4518-2017-3-153-158
Abstract
Multi-wall carbon nanotubes (MWCNTs) reinforced Al2O3 composites (MWCNTs / Al2O3) have been prepared by a hot-pressing method and the mechanical properties of the composites are investigated. Compared with the pure alumina, when adding 1,5 wt. % MWCNTs into the Al2O3 matrix, the composites have much higher flexure strength (403,6 MPa) and fracture toughness (4,21 MPa·m1/2), which shows a simultaneous increase of 38 % in flexure strength and 35 % in fracture toughness. The microstructural observations of MWCNTs / Al2O3 composites show that MWCNTs are homogenously dispersed and embedded strongly in the alumina matrix due to the electrostatic interaction between MWCNTs and Al2O3, resulting in the great improvement of flexure strength and fracture toughness. The reinforcement mechanism of the composites is mainly the pullout of MWCNTs from matrix, MWCNTs bridging and crack deflection. Ill. 5. Ref. 24. Tab. 1.
About the Authors
Yangming ChenChina
Yi Feng
China
Yuqing Wang
China
Fei Mo
China
Gang Qian
China
Dongbo Yu
China
Wenhong Liu
Russian Federation
Xuebin Zhang
China
References
1. Ohnabe, H. Potential application of ceramic matrix composites to aero-engine components. Part A / H. Ohnabe, S. Masaki, M. Onozuka [et al.] // Appl. Sci. Manuf. ― 1999. ― Vol. 30. ― P. 489‒496.
2. Ighodaro, O. L. Fracture toughness enhancement for alumina systems: a review / O. L. Ighodaro, O. I. Okoli // Int. J. Appl. Ceram. Technol. ― 2008. ― № 5. ― P. 313‒323.
3. Zhou, O. Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes / O. Zhou, H. Shimoda, B. Gao [et al.] // Acc. Chem. Res. ― 2002. ― Vol. 35. ― P. 1045‒1053.
4. Salvetat, J. P. Elastic modulus of ordered and disordered multiwalled carbon nanotubes / J. P. Salvetat, A. J. Kulik, J. M. Bonard [et al.] // Adv. Mater. ― 1999. ― Vol. 11. ― P. 161‒165.
5. Salvetat, J. P. Mechanical properties of carbon nanotubes / J. P. Salvetat, J. M. Bonard, N. Thomson [et al.] // Appl. Phys., A. ― 1999. ― Vol. 69. ― P. 255‒260.
6. Walters, D. Elastic strain of freely suspended singlewall carbon nanotube ropes / D. Walters, L. Ericson, M. Casavant [et al.] // Appl. Phys. Lett. ― 1999. ― Vol. 74. ― P. 3803‒3805.
7. Ruoff, R. S. Mechanical and thermal properties of carbon nanotubes / R. S. Ruoff, D. C. Lorents // Carbon. ― 1995. ― Vol. 33. ― P. 925‒930.
8. Vaccarini, L. Mechanical and electronic properties of carbon and boron–nitride nanotubes / L. Vaccarini, C. Goze, L. Henrard [et al.] // Carbon. ― 2000. ― Vol. 38. ― P. 1681‒1690.
9. Iijima, S. Structural flexibility of carbon nanotubes / S. Iijima, C. Brabec, A. Maiti, J. Bernholc // J. Chem. Phys. ― 1996. ― Vol. 104. ― P. 2089‒2092.
10. Huang, J. Superplastic carbon nanotubes / J. Huang, S. Chen, Z. Wang [et al.] // Nature. ― 2006. ― Vol. 439. ― P. 281.
11. Iijima, S. Helical microtubules of graphitic carbon / S. Iijima // Nature. ― 1991. ― Vol. 354. ― P. 56‒58.
12. Treacy, M. Exceptionally high Young's modulus observed for individual carbon nanotubes / M. Treacy, T. Ebbesen, J. Gibson // Nature. ― 1996. ― Vol. 381. ― P. 678‒680.
13. Salvetat, J. P. Elastic and shear moduli of singlewalled carbon nanotube ropes / J. P. Salvetat, G. A. D. Briggs, J. M. Bonard [et al.] // Phys. Rev. Lett. ― 1999. ― Vol. 82. ― P. 944.
14. Yu, M. F. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties / M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff // Phys. Rev. Lett. ― 2000. ― Vol. 84. ― P. 5552.
15. Yu, M. F. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load / M. F. Yu, O. Lourie, M. J. Dyer [et al.] // Science. ― 2000. ― Vol. 287. ― P. 637‒640.
16. Ajayan, P. M. Single-walled carbon nanotube– polymer composites: strength and weakness / P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio // Adv. Mater. ― 2000. ― Vol. 12. ― P. 750‒753.
17. Curran, S. A. A composite from poly (m-phenylenevinyleneco-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics / S. A. Curran, P. M. Ajayan, W. J. Blau [et al.] // Adv. Mater. ― 1998. ― Vol. 10. ― P. 1091‒1093.
18. Sandler, J. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties / J. Sandler, M. Shaffer, T. Prasse [et al.] // Polymer. ― 1999. ― Vol. 40. ― P. 5967‒5971.
19. Ma, R. Processing and properties of carbon nanotubes–nano-SiC ceramic / R. Ma, J. Wu, B. Wei [et al.] // J. Mater. Sci. ― 1998. ― Vol. 33. ― P. 5243‒5246.
20. Laurent, C. Carbon nanotubes–Fe–Alumina nanocomposites. Part II. Microstructure and mechanical properties of the hot-pressed composites / C. Laurent, A. Peigney, O. Dumortier, A. Rousset // J. Eur. Ceram. Soc. ― 1998. ― Vol. 18. ― P. 2005‒2013.
21. Wang, X. Contact-damage-resistant ceramic/singlewall carbon nanotubes and ceramic/graphite composites / X. Wang, N. P. Padture, H. Tanaka // Nat. Mater. ― 2004. ― № 3. ― P. 539‒544.
22. Wei, T. A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness / T. Wei, Z. Fan, G. Luo, F. Wei // Mater. Lett. ― 2008. ― Vol. 62. ― P. 641‒644.
23. Ahmad, I. Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: Mechanical properties and interfacial investigations / I. Ahmad, M. Unwin, H. Cao [et al.] // Compos. Sci. Technol. ― 2010. ― Vol. 70. ― P. 1199‒1206.
24. Zhang, S. C. Pressureless sintering of carbon nanotube–Al2O3 composites / S. C. Zhang, W. G. Fahrenholtz, G. E. Hilmas, E. J. Yadlowsky // J. Eur. Ceram. Soc. ― 2010. ― Vol. 30. ― P. 1373‒1380.
Supplementary files
For citation: Chen Y., Feng Y., Wang Y., Mo F., Qian G., Yu D., Liu W., Zhang X. WELL-DISPERSION OF CARBON NANOTUBES FOR THE GREATLY ENHANCED MECHANICAL PROPERTIES OF ALUMINA-BASED COMPOSITES. NOVYE OGNEUPORY (NEW REFRACTORIES). 2017;(3):153-158. https://doi.org/10.17073/1683-4518-2017-3-153-158
Refbacks
- There are currently no refbacks.