Effect of Al2O3 + 4SiO2 additives on the sintering behavior and thermal shock resistance of MgO-based ceramics


https://doi.org/10.17073/1683-4518-2016-8-48-54

Full Text:




Abstract

With the purpose of improving the sintering properties and thermal shock resistance of MgO-based ceramics, micron-sized MgO was used as the main raw material and nano-Al2O3 and SiO2 as additives. MgO-based ceramics was prepared by introducing different amounts of Al2O3 and SiO2 (Al2O3 and SiO2 at a molar ratio of 1:4) to MgO, shaped by moulding machine pressure and sintered at air atmospheric. The phase compositions and microstructure of ceramics were characterized by X-ray diffraction and scanning electron  microscopy, respectively. The effect of different content of Al2O3 + 4SiO2 on the sintering properties and thermal shock resistance of MgO-based ceramics was also investigated. The results showed that introducing Al2O3 + 4SiO2 addition greatly improved the sintering properties and thermal shock resistance of  MgO-based ceramics. Magnesium aluminate spinel and forsterite formed by solid reaction leading to the grain boundary migration rate of the periclase phase was hindered, the degree of densification of the specimen was deepen, improving the sintering properties of MgO-based ceramics. Meanwhile, the degree of densification increased with the increasing sintering temperature ranged from 1400 to 1500 °C. Furthermore, thermal shock resistance of the
specimen was improved by microcrack interlinking in the body. Through addition of up to 30 wt. % and 45 wt. % Al2O3 + 4SiO2 to MgO showed that the superior sintering properties and thermal shock resistance, respectively. Ill. 7. Ref. 14. Tab. 1.

About the Authors

D. Feng
Отделение высокотемпературных материалов и инжиниринга в области магнезиальных ресурсов Ляонинского университета науки и технологии
China


X. Luo
Отделение высокотемпературных материалов и инжиниринга в области магнезиальных ресурсов Ляонинского университета науки и технологии, Лаборатория новых видов керамики и тонкой обработки отделения материаловедения и инжиниринга Университета Цинхуа
China


Zh. Xie
Отделение высокотемпературных материалов и инжиниринга в области магнезиальных ресурсов Ляонинского университета науки и технологии
China


P. Han
Лаборатория новых видов керамики и тонкой обработки отделения материаловедения и инжиниринга Университета Цинхуа
China


G. Zhang
Отделение высокотемпературных материалов и инжиниринга в области магнезиальных ресурсов Ляонинского университета науки и технологии
China


References

1. Othman, A. G. M. Sintering of magnesia refractories through the formation of periclase-forsterite-spinel phases / A. G. M. Othman, N. M. Khalil // Ceramics International. ― 2005. ― Vol. 31. ― Р. 1117.

2. Othman, A. G. M. Effect of talc and bauxite on sintering, microstructure, and refractory properties of Egyptian dolomitic magnesite / A. G. M. Othman // British Ceramic Transactions. ― 2003. ― Vol. 102. ― P. 265.

3. Zhang, C. Thermal-shock resistance of MgO ceramic / C. Zhang, D. X. Huang, B. Xu [et al.] // Rare Metal Materials and Engineering. ― 2009. ― Vol. 38. ― P. 1207.

4. Ganesh, I. An efficient MgAl2O4 spinel additive for improved slag erosion and penetration resistance of high-Al2O3 and MgO‒C Refractories / I. Ganesh, S. Bhattacharjee, B. P. Saha [et al.] // Ceramics International. ― 2002. ― Vol. 28. ― P. 245.

5. Ganesh, I. A new sintering aid for magnesium aluminate spinel / I. Ganesh, S. Bhattacharjee, B. P. Saha [et al.] // Ceramics International. ― 2001. ― Vol. 27. ― P. 773.

6. Ganesh, I. Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder / I. Ganesh, R. Johnson, G. V. N. Rao [et al.] // Ceramics International. ― 2005. ― Vol. 31. ― P. 67.

7. Szczerba, J. Influence of raw materials morphology on properties of magnesia-spinel refractories / J. Szczerba,Z. Pedzich, M. Nikiel [et al.] // J. Europ. Ceram. Soc. ― 2007. ― Vol. 27. ― P. 1683.

8. Saberi, A. Synthesis and characterization of nanocrystalline forsterite through citrate-nitrate route / A. Saberi, Z. Negahdari, B. Alinejad [et al.] // Ceramics International. ― 2009. ― Vol. 35. ― P. 1705.

9. Cunha-Duncan, F. N. Synthetic spinel–forsterite refractory aggregate from the sillimanite minerals / F. N. Cunha-Duncan, H. Balmori-Ramirez, C. C. Sorrell [et al.] // Minerals and Metallurgical Processing. ― 2003. ― Vol. 20. ― P. 143.

10. Cunha-Duncan, F. N. Synthesis of magnesium aluminate spinels from bauxite and magnesia / F. N. Cunha-Duncan, C. Bradt-Richard // Journal of the American Ceramic Society. ― 2002. ― Vol. 85. ― Р. 2995.

11. Li, M. T. The preparation and property of ZrO2/Al2O3 compound ceramics / M. T. Li, G. D. Zhang, X. D. Luo [et al.] // Bulletin of the Chinese Ceramic Society. ― 2015. ― Vol. 34. ― Р. 1095.

12. Aksel, C. Thermal shock parameters (R, R''' and R'''') of magnesia–spinel composites / C. Aksel, P. D. Warren // Journal of the European Ceramic Society. ― 2003. ― Vol. 23. ― P. 301.

13. Hashimoto, Shinobu. Fabrication of porous spinel (MgAl2O4) from porous alumina using a template method / Shinobu Hashimoto, Sawao Honda, Tomoki Hiramatsu [et al.] // Ceramics International. ― 2013. ― Vol. 39. ― Р. 2077.

14. Aksel, C. Thermal shock behaviour of magnesiaspinel composites / C. Aksel [et al.] // Journal of the European Ceramic Society. ― 2004. ― Vol. 24. ― Р. 2839.


Supplementary files

For citation: Feng D., Luo X., Xie Z., Han P., Zhang G. Effect of Al2O3 + 4SiO2 additives on the sintering behavior and thermal shock resistance of MgO-based ceramics. NOVYE OGNEUPORY (NEW REFRACTORIES). 2016;(8):48-54. https://doi.org/10.17073/1683-4518-2016-8-48-54

Views: 308

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)