THE THERMAL SHOCK AND CLAY ADDITION INFLUENCE ON THE MULLITE-ZIRCONIUM CERAMICS
https://doi.org/10.17073/1683-4518-2014-8-32-37
Abstract
It is shown in the article how the clay and Y2O3 additions, and the temperature difference at range of 1000/20-1500/20 °C influence the crystal phase development, crystal sizes, elastic modulus, ultimate bending strength, linear correlation between elastic modulus and ultimate bend strength of ceramic samples, obtained in course of the mixture components conventional sintering at 1300 and 1500 °С. The most intensive development of the mullite phase and tetragonal ZrO2 crystallysation, and the related increasingof crystal size takes place in the samples obtained at 1300 °C and subjected the thermal shock at the temperature between 1400/20 и 1500/20 °С. Such samples have the largest values of ultimate bending strength and are characterized by implicit development of linear correlation between elastic modulus and ultimate bending strength. Ill. 5. Ref. 12. Tab. 2.
About the Author
A. V. HmelovLatvia
References
1. Ebadzadeh, T. Formation of mullite from precursor powders: sintering, microstructure and mechanical properties / T. Ebadzadeh // Mat. Sci. Eng. A. — 2003. — Vol. 355, № 1/ 2. — P. 56—61.
2. Lin, Y. Fabrication of mullite composites by cyclic infiltration and reaction sintering / Y. Lin, Y. Chen // Mat. Sci. Eng. A. — 2001. — Vol. 298, № 1/ 2. — P. 179—186.
3. Park, H. C. Preparation of zirconia — mullite composites by an infiltration route / H. C. Park, T. Y. Yang, S. Y. Yoon // Mat. Sci. Eng. A. — 2005. — Vol. 405, № 1/ 2. — P. 2333—2338.
4. Boch, P. Ceramic materials: processes, properties and applications / P. Boch, J. C. Niepce. — USA, 2007. — P. 213—216.
5. Medvedovski, E. Alumina — mullite ceramics for structural applications / E. Medvedovski // Ceramics International. — 2006. — Vol. 32, № 4. — P. 369—375.
6. Aksel, C. Mechanical properties and thermal shock behaviour of alumina — mullite — zirconia refractory material / C. Aksel, F. Konieczny // Glass International. — 2001. — Vol. 24, № 1. — P. 16—18.
7. Taheradati, L. Observation of dislocation assisted high temperature deformation in mullite and mullite composites / L. Taheradati, J. Trujilo, T. Chen [et al.] // J. Eur. Ceram. Soc. — 2008. — Vol. 28, № 2. — P. 371—376.
8. Aksel, C. Mechanical properties and thermal shock behaviour of alumina — mullite — zirconia and alumina mullite refractory materials by slip casting / C. Aksel // Ceramics International. — 2003. — Vol. 29, № 3. — P. 311—316.
9. Rendtorff, N. M. Thermal shock behaviour of dense mul-lite - zirconia composites obtained by two processing routes / N. M. Rendtorff, L. B. Garrido, E. F. Aglietti // Ceramics International. — 2008. — Vol. 34, № 8. — P. 2017—2024.
10. Rendtorff, N. M. Thermal shock behaviour of mullite — zirconia — zircon composites. Influence of zirconia phase transformation / N. M. Rendtorff, L. B. Garrido, E. F. Aglietti // J. Therm. Anal. Colorim. — 2011. — Vol. 104, № 2. — P. 569—576.
11. Rendtorff, N. M. Thermal shock resistance and fatique of zircon — mullite composite materials / N. M. Rendtorff, L. B. Garrido, E. F. Aglietti // Ceramics International. — 2011. — Vol. 37, № 4. — P. 1427—1434.
12. Rendtorff, N. M. Mullite — zirconia — zircon composites: Properties and thermal shock resistance / N. M. Rendtorff, L. B. Garrido, E. F. Aglietti // Ceramics International. — 2009. — Vol. 35, № 2. — P. 779—786.
Supplementary files
For citation: Hmelov A.V. THE THERMAL SHOCK AND CLAY ADDITION INFLUENCE ON THE MULLITE-ZIRCONIUM CERAMICS. NOVYE OGNEUPORY (NEW REFRACTORIES). 2014;(8):32-37. https://doi.org/10.17073/1683-4518-2014-8-32-37
Refbacks
- There are currently no refbacks.