BENEFICIATION AND MULLITIZATION OF MISHIDOVAN ANDALUSITE
https://doi.org/10.17073/1683-4518-2014-8-14-21
Abstract
The results of mineralogical studies by XRD, XRF and thin section techniques showed that the main minerals of the deposits (Bafgh -Yazd region containing 5-10 percent silimanite minerals group, with 18-20 % Al2O3) were quartz, silimanite, mica (biotite and moscovite), garnet, kyanite, andalusite and some opaque minerals. Mineral processing studies showed that the kyanite concentrate from this ore could be obtained using different methods such as magnetic separation, vibrating table and flotation. The results of experiments showed that a concentrate of 42 % Al2O3 with 54 % recovery was obtained, using vibrating table. In order to separate iron-bearing minerals (Fe2O3 contents to less than 1 %), the concentrate was processed by high intensity magnetic separation, which increased the Al2O3 contents to 62 %.
Applying flotation method to the fine fraction of the sample (75-150 pm) a concentrate containing 46,3 % Al2O3, with a recovery of 47,56 %, was obtained. The process of mullitization of kyanite concentrate was also studied at different conditions of heat treatment (1400-1600 °C and 0,5-3,5 hours) and particle size (38-300 pm). The results of microstructure and phase evolution studies by SEM and XRD showed that total transformation of kyanite to mullite took place by heat treatment between 1500-1550 °C during 2,5 hours. At 1550 °C, the rate of mullitization and densification were improved by decreasing particle size of materials from 300 to 38 pm. Ill. 10. Ref. 20. Tab. 10.About the Authors
A. NamiranianIran, Islamic Republic of
M. Kalantar
Iran, Islamic Republic of
References
1. Exploitation studies of Mishdowan Kyanite deposits (bafgh-yazd). — Iranian Mineral Research and Application Centre, Tehran, Iran. — 2002.
2. Shockelford, J. F. Ceramic and glass materials: structure, properties and processing /J. F. Shockelford, R. H. Doremus : Springer, 2008.
3. Schneider, S. J. Ceramics and glasses / S. J. Schneider : ASM International, 2000.
4. Ildefonse, J. P. Mullitization of andalusite in refractory bricks / J. P. Ildefonse // Key Engineering Materials. — 1997. — Vols. 132-136. — P. 1798-1801.
5. Bouchetou, M.-L. Mullite grown from fired andalusite grains: the role of impurities and of the high temperature liquid phase on the kinetics of mullitization and consequences on thermal shocks resistance / M.-L. Bouchetou // Ceramics International. — 2005. — Vol. 31, № 7. — P. 999-1005.
6. Tripathi, H. S. Effect of chemical composition on sintering and properties of Al2O3-SiO2 system derived from silimanite beach sand / H. S. Tripathi, J. Banerjee // Ceramic International. — 1999. — Vol. 25. — P. 19-25.
7. Lepezin, G. G. Prospects for organizing industrial production of Kyanite concentrates in the Urals / G. G. Lepezin, V. A. Perepelitsyn, V. I. Pokusaev // Refractories and industrial ceramics. — 1996. — Vol. 37, № 8. — P. 271.
8. Fatama, D. Removal of hematite from Bitlis-Hurmus kyanite for producing concentrates suitable for the refractory industry / D. Fatama, H. Abakay // Mineral Processing and Extractive Metallurgy. — 2005. — Vol. 114. — P. C47.
9. Amanullah, S. Beneficiation of Mica-Quartz-bearing Kyanite / S. Amanullah, G. M. Rao, R. K. Satyana // 9th Industrial Minerals International Congress, Sydney. — 1990. — № 271. — P. 24.
10. Bulut, G. Flotation behavior of Bitlis kyanite ore / G. Bulut, C. Yurtsever // International Journal of Mineral Processing. — 2004. — Vol. 73. — P. 29-36.
11. Prabhakar, S. Beneficiation of sillimanite by column flotation — a pilot scale study / S. Prabhakar, R. Bhaskar, R. Subba // International Journal of Mineral Processing. — 2006. — Vol. 81. — P. 159-165.
12. Oelkers,E. H. Experimental study of kyanite dissolution rates as a function of chemical affinity and solution composition / E. H. Oelkers, S. Jacques // Geochimica et Cosmochimica Acta. — 1999. — Vol. 63, № 6. — P. 785-797.
13. Joaquin, A. S. Mechanical activation of the decomposition and sintering of Kyanite / A. S. Joaquin, C. A. Ricardo, B. R. Heberto [et al.] // J. Amer. Ceram. Soc. — 2002. — Vol. 85, № 10. — P. 2425.
14. Richard, C. Nano-milling of the sillimanite mineral, kyanite, and its reaction with alumina to form mullite / C. Richard // J. Ceram. Proc. Res. — 2005. — Vol. 6, № 4. — P. 271-275.
15. Takesshita, M. Sintering and mullite formation from Kyanite-glass system / M. Takesshita, O. Matsuda, T. Watari [et al.] // J. Ceram. Soc. Japan. — 1993. — Vol. 101, № 11. — P. 1308-1312.
16. Potter, M. J. Materials review: Kyanite / M. J. Potter // Amer. Ceram. Soc. Bull. — 2001. — Vol. 80, № 8. — P. 77-79.
17. Comodi, P. High-Pressure behavior of kyanite: Compressibility and structural deformations / P. Comodi, F. P. Zanazzi, S. Poli [et al.] // American Mineralogist. — 1997. — Vol. 82. — P. 452-459.
18. Sainz, M. A. Microstructural evolution and growth of crystallite size of mullite during thermal transformation of kyanite / M. A. Sainz, S. J. Bastida, A. Caballero // J. Europ. Ceram. Soc. — 1997. — Vol. 17, № 11. — P. 1277-1284.
19. Tomba, A. Elongated mullite crystals obtained from high temperature transformation of sillimanite / A. Tomba, M. A. Camerucci, G. Urretarizcaya [et al.] // Ceramic International. — 1999. — Vol. 25. — P. 245-252.
20. Tripathi, H. S. Synthesis and mechanical properties of mullite from beach sand silimanite: Effect of TiO2 / H. S. Tripathi, J. Banerjee // J. Europ. Ceram. Soc. — 1998. — Vol. 18. — P. 2081-2087.
Supplementary files
For citation: Namiranian A., Kalantar M. BENEFICIATION AND MULLITIZATION OF MISHIDOVAN ANDALUSITE. NOVYE OGNEUPORY (NEW REFRACTORIES). 2014;(8):14-21. https://doi.org/10.17073/1683-4518-2014-8-14-21
Refbacks
- There are currently no refbacks.