PLASMA-SPARK PROCESS FOR MULLITE-ZIRCONIUM CERAMICS
https://doi.org/10.17073/1683-4518-2014-4-33-38
Abstract
The results of evolution of crystal phases, apparent density, caking index, Vickers hardness number, ultimate strength in compression, linear correlation between caking index and mechanical features (Vickers hardness number and ultimate strength in compression) are shown in the article for the mullite-zirconium ceramics obtained by means of plasma-spark sinteringwith Y2O3 additions in temperature range of 1250-1450 °C both without clay and with clay additions. The clay addition to the sintering initial component mixture promotes the intense mullitization, whereas the Y2O3 addition provides the intense solid cubic ZrO2 solution formation in the obtained samples in the temperature range of 1250-1450 °C. The clay addition to the sintering initial component mixture allows to obtain the samples with maximal values of both apparent density and caking index. This determinates the greater values of both Vickers hardness number and ultimate strength in compression comparing to the samples obtained only with Y2O3 addition. The linear correlation between caking index and mechanical features is mostly noticeable in the samples obtained out of sintered component mixture without clay addition. Ill. 8. Ref. 14. Tab. 2.
About the Author
A. V. HmelovLatvia
References
1. Ebadzadeh, T. Formation of mullite from precursor powders: sintering, microstructure and mechanical properties / T. Ebadzadeh // Mat. Sci. Eng. A. — 2003. — Vol. 355, № 1/2. — P. 56-61.
2. Behmanesh, N. Role of mechanical activation of precursors in solid state processing nanostructured mullite phase / N. Behmanesh, S. Heshmati-Manesh, A. Ataie // J. All. Comp. — 2008. — Vol. 450, № 1/2. — P. 421-425.
3. Bijwas, N. C. Comparative study of zirconia-mullite and alumina-zirconia composites / N. C. Bijwas, S. P. Chaudhuri // Chem. Mat. Sci. — 2003. — Vol. 22, № 1. — P. 37-41.
4. Park, H. C. Preparation of zirconia-mullite composites by an infiltration route / H. C. Park, T. Y. Yang, S. Y. Yoon // Mat. Sci. Eng. A. — 2005. — Vol. 405, № 1/2. — P. 2333-2338.
5. Rahaman, M. N. Ceramic processing and sintering — 2nd edition / M. N. Rahaman. — USA. 2003. — P. 818-819, 824-828, 830-837.
6. Khor, K. A. Spark plasma reaction sintering of ZrO2-mullite composites from plasma spheroidized zircon/ alumina powders / K. A. Khor, L. G. Yu, Y. Li, Z. L. Dong // Mat. Sci. Eng. A. — Struct. Mat. Prop. Microst. : Proc. — 2003. — Vol. 339, № 1/2. — P. 286-296.
7. Горшков, В. С. Физическая химия силикатов и других тугоплавких соединений / В. С. Горшков, В. Г. Савельев, Н. Ф. Фёдоров. — М. : Высшая школа, 1988. — С. 344-346.
8. Lian, G. Superfast densification of oxide ceramics by spark plasma sintering / G. Lian, H. Jin-Sheng, M. Hiroki, D. Sebastian // J. Inorg. Mat. — 1998. — Vol. 13, № 1. — P. 18-22.
9. Rocha-Rongel, E. Zirconia-mullite composites consolidated by spark plasma reaction sintering from zircon and alumina / E. Rocha-Rongel, H. Miyamoto // J. Amer. Ceram. Soc. — 2005. — Vol. 88, № 5. — P. 1150-1157.
10. Yugeswaran, S. Transferred arc plasma processing of mullite-zirconia composite from natural bauxite and zircon sand / S. Yugeswaran, V. Selvarajan, P. Dhanasekaran, L. Lusvarghi // Vacuum. — 2009. — Vol. 83, № 2. — P. 353-359.
11. http://www.Substech.com/sparkplasmasintering/scheme/htm.
12. Kong, L. B. Anizotropic grain growth of mullite in highenergy ball milling powders doped with transation metal oxides / L. B. Kong, T. S. Zhang, J. Ma, F. Boey // J. Eur. Ceram. Soc. — 2003. — Vol. 23, № 13. — P. 2247-2256.
13. Торопов, Н. А. Диаграммы состояния силикатных систем : справочник / Н. А. Торопов, В. П. Барзаковский, Р. В. Лапин. Т. 1. — М. : Наука, 1979. — С. 437-439.
14. Kong, L. B. Mullite phase formation in oxide mixtures in the presence of Y2O3, La2O3 and CeO2 / L. B. Kong, T. S. Zhang, F. Boey, R. F. Zhang // J. All. Comp. — 2004. — Vol. 372, № 1/2. — P. 290-299.
Supplementary files
For citation: Hmelov A.V. PLASMA-SPARK PROCESS FOR MULLITE-ZIRCONIUM CERAMICS. NOVYE OGNEUPORY (NEW REFRACTORIES). 2014;(4):33-38. https://doi.org/10.17073/1683-4518-2014-4-33-38
Refbacks
- There are currently no refbacks.