USE OF RECYCLED CERAMIC MATERIALS IN THE MANUFACTURING OF A TRIAXIAL REFRACTORY
https://doi.org/10.17073/1683-4518-2013-6-54-62
Abstract
In this study, a formulation for a triaxial refractory material using internally produced waste materials as main components. A mixture design and response surface analysis was applied to decrease the laboratory work by obtaining an optimized formulation area, in which the required characteristics of the final product are achieved. Moreover, the cost/benefit relationship may be improved in the formulation stage, and a significantly better understanding of the processing-microstructure-properties interactions of a refractory product may be gained. Among other raw materials, recycled materials from the manufacture of refractory plates were used: coal ash, furnace sand, waste glaze, and roll-milled high-alumina refractory. The methodology was able to help finding a region of the triaxial diagram in which the product characteristics meet the specifications required for the use of refractory materials, such as linear shrinkage and flexural strength after firing. The optimized composition resulted in a substantial cost reduction when compared to the refractory currently used, besides contributing tothe environment. Ill. 12. Ref. 32. Tab. 3.
About the Authors
M. Dal BóBrazil
D. Hotza
Brazil
References
1. Pyrikov, A. Certain aspects in the use of refractory materials and their waste products in industry / A. Pyrikov, S. Vil'danov, A. Likhodievskii // Refractories and Industrial Ceramics. — 2010. — Vol. 51, № 2. — P. 126.
2. Manfredini, T. The recycling of ceramic sludges in the production process: An option for ceramic tile factories to reach zero pollution / T. Manfredini [et al.] // Environmental Technology. — 1991. — Vol. 12, № 10. — P. 927.
3. Escardino, A. Utilizing the used catalyst from refinery fcc units as a substitute for kaolin in formulating ceramic frits / A. Escardino, J. L. Amoros, A. Moreno, E. Sanchez // Waste Management & research. — 1995. — Vol. 13, № 5. — P. 569.
4. Dondi, M. Recycling PC and TV waste glass in clay bricks and roof tiles / M. Dondi, G. Guarini, M. Raimondo [et al.] // Waste Management. — 2009. — Vol. 29, № 6. — P. 1945.
5. Loryuenyong, V. Effects of recycled glass substitution on the physical and mechanical properties of clay bricks / V. Loryuenyong, T. Panyachai, K. Kaewsimork [et al.] // Waste Management. — 2009. — Vol. 29, № 10. — P. 2717.
6. Segadaes, A. M. Use of phase diagrams to guide ceramic production from wastes / A. M. Segadaes // Advances in Applied Ceramics. — 2006. — Vol. 105, № 1. — P. 46.
7. Raupp-Pereira, F. Ceramic formulations prepared with industrial wastes and natural sub-products / F. Raupp-Pereira, D. Hotza, A. M. Segadaes, [et al.] // Ceramics International. — 2006. — Vol. 32, № 2. — P. 173.
8. Menezes, R. R. Optimization of wastes content in ceramic tiles using statistical design of mixture experiments / R. R. Menezes [et al.] // J. Eur. Ceram. Soc. — 2008. -Vol. 28, № 16. — P. 3027.
9. Junkes,J. A. Ceramic Tile Formulations from Industrial Waste / J. A. Junkes, M. A. Carvalho, A. M. Segadaes [et al.] // Interceram. — 2011. — Vol. 60, № 1. — P. 36.
10. Cheng, T. W. A study of synthetic forsterite refractory materials using waste serpentine cutting / T. W. Cheng, Y. C. Ding, J. P. Chiu // Minerals Engineering. — 2002. — Vol. 15, №4. — P. 271.
11. Ribeiro, M.J. Recycling of Al-rich industrial sludge in refractory ceramic pressed bodies / M. J. Ribeiro, D. U. Tu-lyaganov, J. M. Ferreira [et al.] // Ceramics International. — 2002. — Vol. 28, № 3. — P. 319.
12. Conejo, A. N. Recycling MgO-C refractory in electric arc furnaces / A. N. Conejo, R. G. Lule, F. Lopez [et al.] // Resources, Conservation and Recycling. — 2006. — Vol. 49, № 1. — P. 14.
13. Arianpour, F. Characterization, microstructure and corrosion behavior of magnesia refractories produced from recycled refractory aggregates / F. Arianpour, F. Kazemi, F. G. Fard//Minerals Engineering. — 2010. — Vol. 23, № 3. — P. 273.
14. Valenza, F. Sintering of waste of superalloy casting investment shells as a fine aggregate for refractory tiles / F. Valenza [et al.] // Ceramics International. — 2010. — Vol. 36, № 2. — P. 459.
15. Sutcu, M. Production of anorthite refractory insulating firebrick from mixtures of clay and recycled paper waste with sawdust addition / M. Sutcu, S. Akkurt, A. Bayram [et al.] // Ceramics International. — 2012. — Vol. 38, № 2. — P. 1033.
16. Braganga, S. Use of mineral coal ashes in insulating refractory brick / S. Braganga, A. Zimmer, C. Bergmann // Refractories and Industrial Ceramics. — 2008. — Vol. 49, № 4. — P. 320.
17. Correia, S. L. Effect of quartz sand replacement by agate rejects in triaxial porcelain / S. L. Correia, G. Dien-stmann, M. V. Folgueras [et al.] // Journal of Hazardous Materials. — 2009. — Vol. 163, № 1. — P. 315.
18. Hojamberdiev, M. Utilization of muscovite granite waste in the manufacture of ceramic tiles / M. Hojamber-diev, A. Eminov, Y. Xu // Ceramics International. — 2011. — Vol. 37, №3. — P. 871.
19. Raimondo, M. Effect of waste glass (TV/PC cathodic tube and screen) on technological properties and sintering behaviour of porcelain stoneware tiles / M. Raimondo [et al.] // Ceramics International. — 2007. — Vol. 33, № 4. — P. 615.
20. Lazic, Z. R. Design of experiments in chemical engineering: a practical guide / Z. R. Lazic. — John Wiley & Sons, 2006.
21. Luz, A. P. Use of glass waste as a raw material in porcelain stoneware tile mixtures / A. P. Luz, S. Ribeiro // Ceramics International. — 2007. — Vol. 33, № 5. — P. 761.
22. Nardi,J. V. Enhancing the properties of ceramic products through mixture design and response surface analysis / J. V. Nardi, W. Acchar, D. Hotza //J. Eur. Ceram. Soc. — 2004. — Vol. 24, № 2. — P. 375.
23. Correia, S. L. Using statistical techniques to model the flexural strength of dried triaxial ceramic bodies / S. L. Correia, K. A. S. Curto, D. Hotza [et al.] // J. Eur. Ceram. Soc. — 2004. — Vol. 24, № 9. — P. 2813.
24. Neto, B. d. B. Planejamento e otimizagao de experi-mentos / B. d. B. Neto, I. S. Scarminio, R. E. Bruns ; 2a, Ed. — Unicamp, Campinas — Sro Paulo, 2001.
25. Bilek, V. Materiais refratarios para fornos industriais / V. Bilek. — Tupy : Joinville, 1978.
26. ABNT, in Annex C: Ceramic Tiles — Specifications and Test Methods (Brazilian Association for Technical Standards — ABNT, 1997).
27. ISO, in Method for determination of water absorption (British Standards Institution — BSI, 1997).
28. Qelik, H. Technological characterization and industrial application of two Turkish clays for the ceramic industry / H. Qelik // Applied Clay Science. — 2010. — Vol. 50, № 2. — P. 245.
29. Barzegar, A. R. Tensile strength of dry, remoulded soils as affected by properties of the clay fraction / A. R. Barzegar, J. M. Oades, P. Rengasamy [et al.] // Geo-derma. — 1995. — Vol. 65, № 1-2.— P. 93.
30. Monteiro, S. N. Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil / S. N. Monteiro, C. M. F. Vieira // Applied Clay Science. — 2004. — Vol. 27, № 3/4. — P. 229.
31. Rahaman, M. / M.Rahaman // Ceramic Processing and Sintering. — 2003. — Vol. 2. — Basel : Marcel Dekker Inc. (New York).
32. Correia, S. L. Simultaneous optimization of linear firing shrinkage and water absorption of triaxial ceramic bodies using experiments design / S. L. Correia, D. Hotza, A. M. Segadaes // Ceramics International. — 2004. — Vol. 30, №6.— P. 917.
Supplementary files
For citation: Dal Bó M., Hotza D. USE OF RECYCLED CERAMIC MATERIALS IN THE MANUFACTURING OF A TRIAXIAL REFRACTORY. NOVYE OGNEUPORY (NEW REFRACTORIES). 2013;(6):54-62. https://doi.org/10.17073/1683-4518-2013-6-54-62
Refbacks
- There are currently no refbacks.