INFLUENCE OF MICROSTRUCTURE ON FORMATION OF DETERIORATION LAYER IN PERICLASE-HERCYNITE BRICKS


https://doi.org/10.17073/1683-4518-2016-5-39-43

Full Text:




Abstract

The microstructure of the original layer and the cement melt penetrated layer of a used periclase-hercynite brick from a cement rotary kiln with a daily output of 5000 tons for 12 months was studied by XRD, SEM, EDS, and a mercury porosimeter.  The results show that the cation diffusion between hercynite and periclase particles in the brick at high temperatures decreases the pore size of the brick. The pore size in the original layer mainly locates in the range of 4~20μm; the decreased pore size increases the penetration resistance of the cement melt to the inner of the brick and makes the cement melt react with the pore walls better. The components of the matrix pore walls such as MgO and Al2O3 dissolve in the cement melt, enhancing the hot properties of the penetrated melt, decreasing the penetration depth, and slowing the formation of the deterioration layer down. The pore structure and the element distribution endow the brick with good thermal shock resistance.

About the Authors

Jun-hong Chen
Пекинский университет науки и технологии, Пекин
China


Ming-wei Yan
Пекинский университет науки и технологии, Пекин
China


Dong-fang Liu
Китайский университет горного дела и технологии, Пекин
China


Peng Jiang
Пекинский университет науки и технологии, Пекин
China


Bin Li
Пекинский университет науки и технологии, Пекин
China


Jia-lin Sun
Пекинский университет науки и технологии, Пекин
China


References

1. Mujumdar, K. S. Rotary Cement Kiln Simulator (RoCKS): Integrated modeling of pre-heater, calciner, kiln and clinker cooler / K. S. Mujumdar, K. V. Ganesh, S. B. Kulkarni [et al.] // Chem. Eng. Sci. ― 2007. ― Vol. 62, № 9. ― P. 2590‒2607.

2. Stadler, K. S. Model predictive control of a rotary cement kiln / K. S. Stadler, J. Poland, E. Gallestey // Control. Eng. Pract. ― 2011. ― Vol. 19, № 1. ― P. 1‒9.

3. Contreras, J. E. Microstructure and properties of hercynite‒magnesia‒calcium zirconate refractory mixtures / J. E. Contreras, G. A. Castillo, E. A. Rodríguez [et al.] // Mater. Charact. ― 2005. ― Vol. 54. ― P. 354‒359.

4. Kim, D. H. The high-temperature properties of basic bricks for cement kilns with Fe2O3 bearing magnesia clinker / D. H. Kim, C. J. Uym, S. J. Lee // Proceedings of the Unified Int. Tech. Conf. on Refractories (UNITECR’2003). ― 2003. ― P. 47‒50.

5. Shubin, V. I. Design and service conditions of the refractory lining for rotary kiln / V. I. Shubin // Refract. Ind. Ceram ― 2001. ― Vol. 42, № 3. ― P. 130‒136.

6. Shubin, V. I. Mechanical effects on the lining of rotary cement kilns / V. I. Shubin // Refract. Ind. Ceram. ― 2001. ― Vol. 42, № 5. ― P. 245‒250.

7. Obregón, Á. MgO–CaZrO3-based refractories for cement kilns / Á. Obregón, J. L. R. Galicia, J. L. Cuevas [et al.] // J. Eur. Ceram. Soc. ― 2011. ― Vol. 31, № 1. ― P. 61‒74.

8. Wajdowicz, A. A. Correlation of basic refractory brick development with the evolution of cement industrial kilns / A. A. Wajdowicz // Proceedings of the Unified Int. Tech. Conf. on Refractories (UNITECR’93). ― 1993. ― Р. 173‒270.

9. Liu, G. P. Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln / G. P. Liu, N. Li, W. Yan [et al.] // Ceram. Int. ― 2014. ― Vol. 40, № 6. ― Р. 8149‒8155.

10. Bartha, P. Present state of the refractory linings for cement kilns / P. Bartha, H. J. Klischat // CN. Refract. ― 1999. ― Vol. 6, № 3. ― P. 31‒39.

11. Buchebner, G. Magnesia-hercynite bricks, an innovative burnt basic refractory / G. Buchebner, T. Molinaria, H. Harmuth // Proceedings of the Unified Int. Tech. Conf. on Refractories (UNITECR´99). ― 1999. ― P. 201‒203.

12. Imai, K. Influence of Alkali Salt on Magnesia-Spinel Bricks for Cement Kiln / K. Imai, H. Kusunose, I. Kenmochi [et al.] // Taikabutsu Overseas. ― 1998. ― № 2. ― P. 94, 95.

13. Liu, H. L. Development of magnesia-hercynite brick for burning zone of cement rotary kiln / H. L. Liu, J. P. Shen, X. Z. Liu [et al.] // Refractories. ― 2004. ― Vol. 38, № 6. ― P. 414‒416.

14. Contreras, J. E. Microstructure and properties of hercynite-magnesia-calcium zirconate refractory mixtures / J. E. Contreras, G. A. Castillo, E. A. Rodríguez [et al.] // Mater. Charact. ― 2005. ― Vol. 54, № 11. ― Р. 354‒359.

15. Botta, P. M. Mechanochemical synthesis of hercynite / P. M. Botta, E. F. Aglietti, J. M. P. López // Mater. Chem. Phys. ― 2002. ― Vol. 76, № 1. ― Р. 104‒109.

16. Pithawalla, Y. B. Synthesis and characterization of nanocrystalline iron aluminide particles / Y. B. Pithawalla, M. S. El Shall, S. C. Deevi // Intermetallics. ― 2000. ― Vol. 8, №9. ― P. 1225‒1231.

17. Nievoll, J. Performance of Magnesia Hercynite Bricks in Large Chinese Cement Rotary Kilns / J. Nievoll, Z. Guo, S. Shi // RHI Bull. ― 2006. ― № 3. ― P. 15‒17.

18. Wang, J. Z. Refractories for Cement Kilns / J. Z. Wang, D. F. Zeng. ― Beijing : Chemical Industry Press, 2011.

19. Goto, K. Chromite in Refractories / K. Goto // Taikabutsu Overseas. ― 1997. ― Vol. 47, № 4. ― Р. 223‒229.

20. Yun, S. N. Wear of magnesia-chrome brick used in burning zone of dry-process cement rotary kiln / S. N. Yun, D. Y. Zhang, R. H. Yu [et al.] // Refractories. ― 2004. ― Vol. 38, № 4. ― Р. 238‒241.

21. Jiang, M. X. The isothermal penetration of slags into refractories / M. X. Jiang, Z. Y. Chen // J. Chin. Ceram. Soc. ― 1990. ― Vol. 18, № 3. ― Р. 256‒261.

22. Song, X. Study on broken MgO‒Cr2O3 brick / X. Song, F. Y. Wang // Phy. Examination. Test. ― 2008. ― Vol. 26, № 3. ― Р. 14‒17.


Supplementary files

For citation: Chen J., Yan M., Liu D., Jiang P., Li B., Sun J. INFLUENCE OF MICROSTRUCTURE ON FORMATION OF DETERIORATION LAYER IN PERICLASE-HERCYNITE BRICKS. NOVYE OGNEUPORY (NEW REFRACTORIES). 2016;1(5):39-43. https://doi.org/10.17073/1683-4518-2016-5-39-43

Views: 219

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)