ADVANCES OF NANOSCALED ADDITIVES ON THE THERMO-MECHANICAL PERFORMANCE OF AL2O3 – C AND MGO – C REFRACTORIES


https://doi.org/10.17073/1683-4518-2013-9-24-36

Full Text:




Abstract

Carbon bonded alumina and magnesia refractories with approximately 30 mass % and 10 mass % residual carbon after coking, respectively, are widely used in various sectors of steel production. Compositions with less residual carbon after coking based on nanoscaled magnesium aluminate spinel (MgAl2O4), alumina (α-Al2O3) and carbon nanotubes (CNTs) either as single additives or combinations of them have been investigated according to their physical, machanical and thermo-mechanical properties. Regarding the Al2O3 – C system, a combination of nanoscaled powders of carbon nanotubes and alumina nanosheets lead to superior thermal shock performance with approximately 30 % less residual carbon in comparison to commercial available functional components, after coking at the low temperature of 1000 °C. Moreover, this composition was functionalised due to the reaction between alumina nanosheets and CNTs, forming the Al3CON new phase and thus, off ering a chemical interconnecting phase for both carbon and alumina fi ller. The new refractory composite structure presented excellent thermo-mechanical properties in spite the lower carbon content, while the Al3CON phase was identifi ed with the aid of electron backscatter diff raction (EBSD) analyses on fracture surfaces of the coked samples. As for the MgO – C system, the best thermo-mechanical performance could be attained with the additions of nanoscaled magnesium aluminate spinel or alumina nanosheets, thus with the use of spinel containing or spinel forming nanoscaled additives. These two MgO – C compositions coked at 1000 °C were able to approach the thermo-mechanical performance of the reference composition, which had with 10 mass % the double amount of graphite. Ill. 15. Ref. 46. Tab. 6. 

About the Authors

V. Rungos
Технический университет Горной академии Фрайберга, Фрайберг
Germany


C. G. Aneziris
Технический университет Горной академии Фрайберга, Фрайберг
Germany


H. Berek
Исследовательский центр Юлиха, Юлих
Germany


E. Skiera
Исследовательский центр Юлиха, Юлих
Germany


C. Thomser
Исследовательский центр Юлиха, Юлих
Germany


References

1. Khezrabadi, M. N.; et al.: The eff ect of additives on the properties and microstructures of Al2O3 – C refractories. J. Mater. Sci. 41 (2006) 3027 – 3032.

2. Yamaguchi, A.: Self-repairing function in the carbon-containing refractory. Int. J. Appl. Ceram. Technol. 4 (2007) [6] 490 – 495.

3. Sunayama, H.; et al.: The eff ect of B4C addition on the oxidation resistance of Al2O3 – C and Al2O3 – SiC – C refractories, in: Proc. Unifi ed Int. Techn. Conf. on Refractories, USA, (1997) 841 – 849.

4. Zhang, S.; Yamaguchi, A.: A comparison of Al, Si and Al4SiC4 added to Al2O3 – C refractories, in: Proc. Unifi ed Int. Techn. Conf. on Refractories USA, (1997) 861 – 869.

5. Vieira Jr., W.; Rand, B: The nature of the bond in silicon-containing alumina-carbon refractory composites — Part I, in: Proc. Unifi ed Int. Techn. Conf. on Refractories, USA, (1997) 831 – 840.

6. Zhang, S.: Next generation carbon-containing refractory composites. Adv. Sci. Technol. 45 (2006) 2246 – 2253.

7. Luhrsen, E.; Ott, A.: Immersion nozzles for metal melts. United States Patent 5.171.495, 15. December 1992.

8. Wang, T.; Yamaguchi, A.: Antioxidation behavior and eff ect of Al8B4C7 added to carbon-containing refractories. J. Ceram. Soc. Japan 108 (2000) [9] 818 – 822.

9. Pitkethly, M. J.: Nanomaterials — the driving force. Materials Today 7, Supplement 1 (2004) [12] 20 – 29.

10. Tamura, S; et al.: Nano-Tech. Refractories – 1: The development of the nano-structural matrix, in: Proc. Unifi ed Int. Techn. Conf. on Refractories, Japan, (2003) 517 – 520.

11. Aneziris, C. G.; Borzov, D.; Ulbricht, J.: Magnesia-carbon bricks — a high-duty refractory material. Interceram Refractories Manual (2003) 22 – 27.

12. Takanaga, S.; et al.: Nano-Tech. Refractories – 2: The application of the nano structural matrix to MgO – C bricks, in: Proc. Unifi ed Int. Techn. Conf. on Refractories, Japan, (2003) 521 – 524.

13. Takanaga, S.; et al.: Nano-Tech. refractories – 3: Development of «MgO – Rimmed MgO – C bricks», in: Proc. of the Unifi ed Int. Techn. Conf. on Refractories, USA, (2005) 148 – 151.

14. Matsui, T.; et al.: Characteristics and applications of nano-tech. Magnesia carbon bricks, in: Proc. Unifi ed Int. Techn. Conf. on Refractories, USA, (2005) 176 – 179.

15. Shiratani, Y.; et al.: Nano-Tech. Refractories – 4: The application of the nano structural matrix to SN plates, in: Proc. Unifi ed Int. Techn. Conf. on Refractories, USA, (2005) 575 – 578.

16. Hattanda, H.; et al.: Nano-Tech. Refractories – 7: Application of nano structured matrix to SN plates, in: Proc. Unifi ed Int. Techn. Conf. on Refractories, Germany, (2007) 204 – 207.

17. Haren, K.; et al.: Improvement of thermal spalling resistance of alumina-graphite materials by nanotechnology, in: Proc. Unifi ed Int. Techn. Conf. on Refractories, Germany, (2007) 358 – 361.

18. Aneziris, C. G.; et al.: Interaction of carbon nanotubes in Al2O3 – C refractories for sliding gate applications, in: Summary Booklet (Abstracts) Unifi ed Int. Techn. Conf. on Refractories, Brazil, (2009) 8.

19. Aneziris, C. G.; et al.: Functional refractory material design for advanced thermal shock performance due to titania additions. Int. J. Appl. Ceram. Technol. 4 (2007) [6] 481 – 489.

20. Braulio, M. A. L.; et al.: Spinel-containing alumina-based refractory castables. Ceram. Int. 37 (2011) 1705 – 1724.

21. Arasu, V. C.; et al.: Infl uence of nano-additives on thermo-mechanical properties of alumina castables, in: Summary Booklet (Abstract) Unifi ed Int. Techn. Conf. on Refractories, Brazil, (2009) 24.

22. Lipinski, T. R.; Drygalska, E.; Tontrup, C.: The infl uence of additions of nanostructured Al2O3-powder on the high temperature strength of high alumina refractories, in: Summary Booklet (Abstracts) Unifi ed Int. Techn. Conf. on Refractories, Brazil, (2009) 12.

23. Sen, A.; et al.: Eff ect of nano-oxides and antioxidants on corrosion and erosion behavior of submerged nozzle for longer sequence casting of steel, in: Summary Booklet (Abstracts) Unifi ed Int. Techn. Conf. on Refractories, Brazil, (2009) 8.

24. Aksel, C.; et al.: Thermal shock behavior of magnesia-spinel composites. J. Eur. Ceram. Soc. 24 (2004) 2839 – 2845.

25. Ghosh, A.; et al.: Eff ect of spinel content on the properties of magnesia-spinel composite refractory. J. Eur. Ceram. Soc. 24 (2004) 2079 – 2085.

26. Musante, L.; et al.: High temperature mechanical behavior of Al2O3 – MgO – C refractories for steelmaking use. Ceram. Int. 37 (2011) 1473 – 1483.

27. Schwartz, A. J.; Kumar, M.; Adams, B. L.: Electron backscatter diff raction in materials science. New York 2000.

28. Humphreys, F. J.: Review: Grain and subgrain characterisation by electron backscatter diff raction. J. of Mater. Sci. 36 (2001) 22.

29. Berek, H.; et al.: Thermal induced phase trasformations in Mg – PSZ fi ne-grain ceramics investigated by XRD and EBSD. Refractories WORLDFORUM 3 (2011) 123.

30. Berek, H.; et al.: Determination of the phase distribution in sintered TRIP-matrix/Mg-PSZ composites using EBSD. Steel Res. Int., Special Issue TRIP matrix composites. In press, 2011.

31. ICDD, ICDD PDF-2 database release 2008, International Centre for Diff raction Data (ICDD), 2008.

32. Roungos, V.; Aneziris, C. G.: Improved thermal shock performance of Al2O3 – C refractories due to nanoscaled additives. Accepted paper for publication in Ceram. Int. DOI: 10.1016/j.ceramint.2011.08.011.

33. Aneziris, C. G.; Hubalkova, J.; Barabas, R.: Microstructure evaluation of MgO – C refractories with TiO2and Al-additions. J. Eur. Ceram. Soc. 27 (2007) 73 – 78.

34. Wagner, R. S.; Ellis, W. C.: The vapor-liquidsolid mechanism of crystal growth and its application to silicon. Trans. Met. Soc. AIME 233 (1965) 1053 – 1064.

35. McMahon, G.; Carpenter, G. J. C.; Malis, T. F.: On the growth mechanism of silicon carbide whiskers. J. Mater. Sci. 26 (1991) 5655 – 5663.

36. Silva, P. C.; Figueiredo, J. L.: Production of SiC and Si3N4 whiskers in C + SiO2 solid mixtures. Mater. Chem. Phys. 72 (2001) 326 – 331.

37. Yang, G.; et al.: Direct observation of the growth process of silicon carbide nanowhiskers by vapor-solid process. Physica E 39 (2007) 171 – 174.

38. Gustafsson, S.; et al.: Alumina/silicon carbide composites fabricated via in situ synthesis of nanosized SiC particles. Ceram. Int. 35 (2009) 1293 – 1296.

39. Li, Y. W., et al.: Formation of dumbbell-shaped β-SiC whiskers in Al2O3 – ZrO2 – C composite refractories. Interceram Refractories Manual (2005) 20 – 23.

40. Wu, R.; et al.: Prism-shaped SiC nanowhiskers. J. Alloys Compd. 453 (2008) 241 – 246.

41. Guoqi, L.; et al.: Eff ect of additives on the properties of Al2O3-graphite material heat-treated in nitrogen atmosphere, in: Proc. Unifi ed Int. Techn. Conf. on Refractories, Mexico, (2001) 1412 – 1417.

42. Friede, B.; Jansen, M.: Some comments on so called «silicon monoxide». J. of Non-Crystalline Solids 204 (1996) 202 – 203.

43. Biehl, E.; Schubert, U.; Kubel, F.: Reduction of solid silicon monoxide by elemental metals. New J. Chem. 25 (2001) 994 – 998.

44. Schulmeister, K.; Mader, W.: TEM Investigation on the structure of amorphous silicon monoxide. J. of Non-Crystalline Solids 320 (2003) 143 – 150.

45. Zhang, S.; Mariott, N. J.; Lee, W. E.: Thermochemistry and microstructures of MgO – C refractories containing various antioxidants. J. Eur. Ceram. Soc. 21 (2001) 1037 – 1047.

46. Bavand-Vandchali, M.; et al.: The infl uence of in situ spinel formation on microstructure and phase evolution of MgO – C refractories. J. Eur. Ceram. Soc. 28 (2008) 563 – 569.


Supplementary files

For citation: Rungos V., Aneziris C.G., Berek H., Skiera E., Thomser C. ADVANCES OF NANOSCALED ADDITIVES ON THE THERMO-MECHANICAL PERFORMANCE OF AL2O3 – C AND MGO – C REFRACTORIES. NOVYE OGNEUPORY (NEW REFRACTORIES). 2013;(9):24-36. https://doi.org/10.17073/1683-4518-2013-9-24-36

Views: 304

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)