PREPARATION OF ZIRCONIUM, TITANIUM, AND MAGNESIUM DIBORIDES BY METALLOTHERMIC REDUCTION


https://doi.org/10.17073/1683-4518-2013-10-37-43

Full Text:




Abstract

Ceramic compositions based on carbides, nitrides, and borides are widely used due to their outstanding resistances to wear, creep at high temperatures, thermal shock, and oxidation. In order to assure that these properties are attained, a defect-free microstructure must be obtained by using homogeneous and high surface area powdered starting materials. In this work we prepared zirconium, titanium, and magnesium diborides by a metallothermic reduction process. The obtained materials were examined by X-ray diffraction (XRD), laser granulometry, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Thermodynamic calculations were carried out using the FactSageO thermochemical software and databases. We observed that a great part of the samples obtained in this work showed significant amounts of MgO in their structures. A potential application of these materials could be as antioxidants for magnesia-carbon refractories since this industrial application does not require the removal of magnesia. It is well established that magnesium, zirconium, and titanium diborides exhibit great stability in reducing atmospheres. Ill. 6. Ref. 37. Tab. 3.


About the Authors

K. S. Campos
Федеральный университет штата Минас-Жерайс
Brazil


F. B. Lenz e Silva G.
Университет Сан-Паулу, Сан-Паулу
Brazil


E. H. M. Nunes
Федеральный университет штата Минас-Жерайс
Brazil


W. L. Vasconcelos
Федеральный университет штата Минас-Жерайс
Brazil


References

1. Bellosi, A. Design and process of non-oxide ceramics. Case study: Factors affecting microstructure and properties of silicon nitride / A. Bellosi ; eds Y. G. Gogotsi and R. A. Andreievsk // Materials science of carbides, nitrides and borides. ― Netherlands : Kluwer Acad. Publ., 1999. ― P. 83‒96.

2. Schwarzkopf, P. Refractory hard metals: Borides, carbides, nitrides, and silicides / P. Schwarzkopf, K. Kieffer. ― N. Y. : MacMillen Co, 1953.

3. Budnikov, P. P. The Technology of ceramics and refractories / P. P. Budnikov. ― Cambridge : M.I.T. press, 1964.

4. Chorley, R. W. Synthetic routes to high surface area nonoxide materials / R. W. Chorley, P. W. Lednor // Adv. Mater. ― 1991. ― Vol. 3, № 10. ― P. 474‒485.

5. Monteverde, F. Processing and properties of zirconium diboride-based composites / F. Monteverde, A. Bellosi, S. Guicciardi // J. Eur. Ceram. Soc. ― 2002. ― Vol. 22, № 3. ― P. 279‒288.

6. Wang, H. MmM5/Mg multi-layer hydrogen storage thin films prepared by dc magnetron sputtering / H. Wang, L. Z. Ouyang, C. H. Peng [et al.] // J. Alloys Compd. ― 2004. ― Vol. 370, № 1‒2. ― L4‒L6.

7. Khanra, A. K. Effect of NaCl on the synthesis of TiB2 powder by a self-propagating high-temperature synthesis technique / A. K. Khanra, L. C. Pathak, S. K. Mishra [et al.] // Mater. Lett. ― 2004. ― Vol. 58, № 5. ― P. 733‒738.

8. Demircan, U. Effect of hCl concentration on TiB2 separation from a self-propagating high-temperature synthesis (ShS) product / U. Demircan, B. Derin, O. Yücel // Mater. Res. Bull. ― 2007. ― Vol. 42, № 2. ― P. 312‒318.

9. Opeka, M. M. Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: theoretical considerations and historical experience / M. M. Opeka, I. G. Talmy, J. A. Zaykoski // J. Mater. Sci. ― 2004. ― Vol. 39, № 19. ― P. 5887‒5904.

10. Fahrenholtz, W. G. Refractory diborides of zirconium and hafnium / W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy [et al.] // J. Am. Ceram. Soc. ― 2007. ― Vol. 90, № 5. ― P. 1347‒1364.

11. Barcena, J. Processing of carbon nanofiber reinforced ZrB2 matrix composites for aerospace applications / J. Barcena, J. Coleto, S. C. Zhang [et al.] // Adv. Eng. Mater. ― 2010. ― Vol. 12, № 7. ― P. 623‒626.

12. Buzea, C. Review of the superconducting properties of MgB2 / C. Buzea, T. Yamashita // Supercond. Sci. Technol. ― 2001. ― Vol. 14, № 11. ― P. R115‒R146.

13. Zeng, X. In situ epitaxial MgB2 thin films for superconducting electronics / X. Zeng, A. V. Pogrebnyakov, A. Kotcharov [et al.] // Nat. Mater. ― 2002. ― Vol. 1, № 1. ― P. 35‒38.

14. Slusky, J. S. Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1‒xAlxB2 / J. S. Slusky, N. Rogado, K. A. Regan [et al.] // Nat. ― 2001. ― Vol. 410, № 1. ― P. 343‒345.

15. Yamaguchi, A. Behavior and effects of ZrB2 added to carbon-containing refractories / A. Yamaguchi, H. Tanaka // Taikabutsu Overseas. ― 1995. ― Vol. 15, № 1. ― P. 3‒9.

16. Bamburov, V. G. Antioxidants in carbon-bearing refractories / V. G. Bamburov, O. V. Sivtsova, V. P. Semyannikov [et al.] // Refract. Ind. Ceram. ― 2000. ― Vol. 41, № 2. ― P. 33‒36.

17. Zhang, S. Influence of additives on corrosion resistance and corroded microstructures of MgO‒C refractories / S. Zhang, W. E. Lee // J. Amer. Ceram. Soc. ― 2001. ― Vol. 21, № 13. ― P. 2393‒2405.

18. Tani, T. SiC matrix composites reinforced with internallysynthesized TiB2 / T. Tani, S. Wada // J. Mater. Sci. ― 1989. ― Vol. 25, № 1. ― P. 1132‒1142.

19. Chamberlain, A. L. Pressureless sintering of zirconium diboride / A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas // J. Amer. Ceram. Soc. ― 2006. ― Vol. 89, № 2. ― P. 450‒456.

20. Zhu, S. Pressureless sintering of zirconium diboride using boron carbide and carbon additions / S. Zhu, W. G. Fahrenholtz, G. E. Hilmas [et al.] // J. Amer. Ceram. Soc. ― 2007. ― Vol. 90, № 11. ― P. 3660‒3663.

21. Giunchi, G. high density MgB2 obtained by reactive liquid Mg infiltration / G. Giunchi // Int. J. Mod. Phys. B. ― 2003. ― Vol. 17, № 1. ― P. 453‒460.

22. Pat. 255221 URSS Synthesis of refractory inorganic compounds / Merzhanov A. G., Shkiro V. M., Borovinskaya I. P. ; 1967.

23. Merzhanov, A. G. Self-propagating high-temperature synthesis of refractory inorganic compounds / A. G. Merzhanov, I. P. Borovinskaya // Dokl. Akad. Nauk SSSR. ― 1972. ― Vol. 204, № 2. ― P. 366‒369.

24. Munir, Z. A. Synthesis of high-temperature materials by self-propagating combustion methods / Z. A. Munir // Amer. Ceram. Soc. Bull. ― 1988. ― Vol. 67, № 2. ― P. 342‒349.

25. Merzhanov, A. G. Self-propagating high-temperature synthesis: Twenty years of research and findings / A. G. Merzhanov; eds. J. B. Holt and Z. A. Munir // Combustion and plasma synthesis of high-temperature materials. ― N. Y. : VCh Publishers, 1990. ― P. 1‒53.

26. Gotman, I. Dense in situ TiB2/TiN and TiB2/TiC ceramic matrix composites: reactive synthesis and properties / I. Gotman, N. A. Travitzky, E. Y. Gutmanas // Mater. Sci. Eng. A. ― 1998. ― Vol. 244, № 1. ― P. 127‒137.

27. Bale, C. FactSage thermochemical software and databases / C. Bale, P. Chartrand, S. A. Degterov [et al.] // Calphad. ― 2002. ― № 26. ― P. 189‒228.

28. Bale, C. W. FactSage thermochemical software and databases ― recent developments / C. W. Bale, E. Belisle, P. Chartrand [et al.] // Calphad. ― 2009. ― Vol. 33, № 2. ― P. 295‒311.

29. Dold, B. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste / B. Dold // J. Geochem. Explor. ― 2003. ― Vol. 80, № 1. ― P. 55‒68.

30. Hong, N. H. Transparent Cr-doped SnO2 thin films: ferromagnetism beyond room temperature with a giant magnetic moment / N. H. Hong, J. Sakai, W. Prellier [et al.] // J. Phys.: Condens. Matter. ― 2005. ― Vol. 17, № 10. ― P. 1697‒1702.

31. Yadong, Y. Synthesis and characterization of MgO nanowires through a vapor-phase precursor method / Y. Yadong, Z. Guangtao, X. Younan // Adv. Funct. Mater. ― 2002. ― Vol. 12, № 4. ― P. 293‒298.

32. Guo, Y. Decomposition and oxidation of magnesium diboride / Y. Guo, W. Zhang, D. Yang [et al.] // J. Amer. Ceram. Soc. ― 2012. ― Vol. 95, № 2. ― P. 754‒759.

33. Setoudeh, N. Formation of zirconium diboride (ZrB2) by room temperature mechanochemical reaction between ZrO2, B2O3 and Mg / N. Setoudeh, N. J. Welham // J. Alloys Compd. ― 2006. ― Vol. 420, № 1/2. ― P. 225‒228.

34. Akkas, B. Effect of hCl concentration on ZrB2 separation from a self-propagating high-temperature synthesis (ShS) product / B. Akkas, M. Alkan, B. Derin [et al.] // Materials Processing and Energy Materials. ― hoboken : John Wiley & Sons, 2011. ― P. 499‒504.

35. Ewais, E. M. M. Carbon based refractories / E. M. M. Ewais // J. Ceram. Soc. Jpn. ― 2004. ― Vol. 112, № 10. ― P. 517‒532.

36. Campos, K. S. The influence of B4C and MgB2 additions on the behavior of MgO‒C bricks / K. S. Campos, G. F. B. L. Silva, E. H. M. Nunes [et al.] // Ceram. Int. ― 2012. ― Vol. 38, № 7. ― P. 5661‒5667.

37. Nishiyama, K. Preparation of ultrafine boride powders by metallothermic reduction method / K. Nishiyama, T. Nakamura, S. Utsumi [et al.] // J. Phys. Conf. Ser. ― 2009. ― Vol. 176, № 1. ― P. 1‒8.


Supplementary files

For citation: Campos K.S., Lenz e Silva G. F.B., Nunes E.H., Vasconcelos W.L. PREPARATION OF ZIRCONIUM, TITANIUM, AND MAGNESIUM DIBORIDES BY METALLOTHERMIC REDUCTION. NOVYE OGNEUPORY (NEW REFRACTORIES). 2013;(10):37-43. https://doi.org/10.17073/1683-4518-2013-10-37-43

Views: 228

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)