ПОЛУЧЕНИЕ ДИБОРИДОВ ЦИРКОНИЯ, ТИТАНА И МАГНИЯ МЕТАЛЛОТЕРМИЧЕСКИМ ВОССТАНОВЛЕНИЕМ
https://doi.org/10.17073/1683-4518-2013-10-37-43
Аннотация
Керамические композиции на основе карбидов, нитридов и боридов широко используются вследствие их исключительной устойчивости к износу, ползучести при высоких температурах, термоудару и окислению. Чтобы обеспечить эти свойства, необходимо получить бездефектную микроструктуру из порошкообразных исходных материалов, характеризующихся однородностью и высокой удельной поверхностью. В этой работе дибориды циркония, титана и магния были изготовлены методом металлотермического восстановления. Полученные материалы проанализировали с помощью рентгеновской дифракции (X-ray diffraction XRD), лазерной гранулометрии, сканирующей электронной микроскопии (SEM) и энергодисперсионной спектроскопии (EDS). Термодинамические расчеты были проведены с использованием термохимического программного комплекса и баз данных FactSage®. Наблюдали, что значительная часть образцов, полученных в этой работе, имела высокое содержание MgO в структурах. Потенциальной областью применения этих материалов может быть их использование как антиоксидантов в периклазоуглеродистых огнеупорах, поскольку такое промышленное применение не требует удаления оксида магния. Точно установлено, что дибориды магния, циркония и титана обладают высокой стабильностью в восстановительной среде.
Об авторах
К. С. КампосБразилия
Ф. Б. Ленц е Сильва
Бразилия
Э. Х. М. Нуньес
Бразилия
В. Л. Васконселос
Бразилия
Список литературы
1. Bellosi, A. Design and process of non-oxide ceramics. Case study: Factors affecting microstructure and properties of silicon nitride / A. Bellosi ; eds Y. G. Gogotsi and R. A. Andreievsk // Materials science of carbides, nitrides and borides. ― Netherlands : Kluwer Acad. Publ., 1999. ― P. 83‒96.
2. Schwarzkopf, P. Refractory hard metals: Borides, carbides, nitrides, and silicides / P. Schwarzkopf, K. Kieffer. ― N. Y. : MacMillen Co, 1953.
3. Budnikov, P. P. The Technology of ceramics and refractories / P. P. Budnikov. ― Cambridge : M.I.T. press, 1964.
4. Chorley, R. W. Synthetic routes to high surface area nonoxide materials / R. W. Chorley, P. W. Lednor // Adv. Mater. ― 1991. ― Vol. 3, № 10. ― P. 474‒485.
5. Monteverde, F. Processing and properties of zirconium diboride-based composites / F. Monteverde, A. Bellosi, S. Guicciardi // J. Eur. Ceram. Soc. ― 2002. ― Vol. 22, № 3. ― P. 279‒288.
6. Wang, H. MmM5/Mg multi-layer hydrogen storage thin films prepared by dc magnetron sputtering / H. Wang, L. Z. Ouyang, C. H. Peng [et al.] // J. Alloys Compd. ― 2004. ― Vol. 370, № 1‒2. ― L4‒L6.
7. Khanra, A. K. Effect of NaCl on the synthesis of TiB2 powder by a self-propagating high-temperature synthesis technique / A. K. Khanra, L. C. Pathak, S. K. Mishra [et al.] // Mater. Lett. ― 2004. ― Vol. 58, № 5. ― P. 733‒738.
8. Demircan, U. Effect of hCl concentration on TiB2 separation from a self-propagating high-temperature synthesis (ShS) product / U. Demircan, B. Derin, O. Yücel // Mater. Res. Bull. ― 2007. ― Vol. 42, № 2. ― P. 312‒318.
9. Opeka, M. M. Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: theoretical considerations and historical experience / M. M. Opeka, I. G. Talmy, J. A. Zaykoski // J. Mater. Sci. ― 2004. ― Vol. 39, № 19. ― P. 5887‒5904.
10. Fahrenholtz, W. G. Refractory diborides of zirconium and hafnium / W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy [et al.] // J. Am. Ceram. Soc. ― 2007. ― Vol. 90, № 5. ― P. 1347‒1364.
11. Barcena, J. Processing of carbon nanofiber reinforced ZrB2 matrix composites for aerospace applications / J. Barcena, J. Coleto, S. C. Zhang [et al.] // Adv. Eng. Mater. ― 2010. ― Vol. 12, № 7. ― P. 623‒626.
12. Buzea, C. Review of the superconducting properties of MgB2 / C. Buzea, T. Yamashita // Supercond. Sci. Technol. ― 2001. ― Vol. 14, № 11. ― P. R115‒R146.
13. Zeng, X. In situ epitaxial MgB2 thin films for superconducting electronics / X. Zeng, A. V. Pogrebnyakov, A. Kotcharov [et al.] // Nat. Mater. ― 2002. ― Vol. 1, № 1. ― P. 35‒38.
14. Slusky, J. S. Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1‒xAlxB2 / J. S. Slusky, N. Rogado, K. A. Regan [et al.] // Nat. ― 2001. ― Vol. 410, № 1. ― P. 343‒345.
15. Yamaguchi, A. Behavior and effects of ZrB2 added to carbon-containing refractories / A. Yamaguchi, H. Tanaka // Taikabutsu Overseas. ― 1995. ― Vol. 15, № 1. ― P. 3‒9.
16. Bamburov, V. G. Antioxidants in carbon-bearing refractories / V. G. Bamburov, O. V. Sivtsova, V. P. Semyannikov [et al.] // Refract. Ind. Ceram. ― 2000. ― Vol. 41, № 2. ― P. 33‒36.
17. Zhang, S. Influence of additives on corrosion resistance and corroded microstructures of MgO‒C refractories / S. Zhang, W. E. Lee // J. Amer. Ceram. Soc. ― 2001. ― Vol. 21, № 13. ― P. 2393‒2405.
18. Tani, T. SiC matrix composites reinforced with internallysynthesized TiB2 / T. Tani, S. Wada // J. Mater. Sci. ― 1989. ― Vol. 25, № 1. ― P. 1132‒1142.
19. Chamberlain, A. L. Pressureless sintering of zirconium diboride / A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas // J. Amer. Ceram. Soc. ― 2006. ― Vol. 89, № 2. ― P. 450‒456.
20. Zhu, S. Pressureless sintering of zirconium diboride using boron carbide and carbon additions / S. Zhu, W. G. Fahrenholtz, G. E. Hilmas [et al.] // J. Amer. Ceram. Soc. ― 2007. ― Vol. 90, № 11. ― P. 3660‒3663.
21. Giunchi, G. high density MgB2 obtained by reactive liquid Mg infiltration / G. Giunchi // Int. J. Mod. Phys. B. ― 2003. ― Vol. 17, № 1. ― P. 453‒460.
22. Pat. 255221 URSS Synthesis of refractory inorganic compounds / Merzhanov A. G., Shkiro V. M., Borovinskaya I. P. ; 1967.
23. Merzhanov, A. G. Self-propagating high-temperature synthesis of refractory inorganic compounds / A. G. Merzhanov, I. P. Borovinskaya // Dokl. Akad. Nauk SSSR. ― 1972. ― Vol. 204, № 2. ― P. 366‒369.
24. Munir, Z. A. Synthesis of high-temperature materials by self-propagating combustion methods / Z. A. Munir // Amer. Ceram. Soc. Bull. ― 1988. ― Vol. 67, № 2. ― P. 342‒349.
25. Merzhanov, A. G. Self-propagating high-temperature synthesis: Twenty years of research and findings / A. G. Merzhanov; eds. J. B. Holt and Z. A. Munir // Combustion and plasma synthesis of high-temperature materials. ― N. Y. : VCh Publishers, 1990. ― P. 1‒53.
26. Gotman, I. Dense in situ TiB2/TiN and TiB2/TiC ceramic matrix composites: reactive synthesis and properties / I. Gotman, N. A. Travitzky, E. Y. Gutmanas // Mater. Sci. Eng. A. ― 1998. ― Vol. 244, № 1. ― P. 127‒137.
27. Bale, C. FactSage thermochemical software and databases / C. Bale, P. Chartrand, S. A. Degterov [et al.] // Calphad. ― 2002. ― № 26. ― P. 189‒228.
28. Bale, C. W. FactSage thermochemical software and databases ― recent developments / C. W. Bale, E. Belisle, P. Chartrand [et al.] // Calphad. ― 2009. ― Vol. 33, № 2. ― P. 295‒311.
29. Dold, B. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste / B. Dold // J. Geochem. Explor. ― 2003. ― Vol. 80, № 1. ― P. 55‒68.
30. Hong, N. H. Transparent Cr-doped SnO2 thin films: ferromagnetism beyond room temperature with a giant magnetic moment / N. H. Hong, J. Sakai, W. Prellier [et al.] // J. Phys.: Condens. Matter. ― 2005. ― Vol. 17, № 10. ― P. 1697‒1702.
31. Yadong, Y. Synthesis and characterization of MgO nanowires through a vapor-phase precursor method / Y. Yadong, Z. Guangtao, X. Younan // Adv. Funct. Mater. ― 2002. ― Vol. 12, № 4. ― P. 293‒298.
32. Guo, Y. Decomposition and oxidation of magnesium diboride / Y. Guo, W. Zhang, D. Yang [et al.] // J. Amer. Ceram. Soc. ― 2012. ― Vol. 95, № 2. ― P. 754‒759.
33. Setoudeh, N. Formation of zirconium diboride (ZrB2) by room temperature mechanochemical reaction between ZrO2, B2O3 and Mg / N. Setoudeh, N. J. Welham // J. Alloys Compd. ― 2006. ― Vol. 420, № 1/2. ― P. 225‒228.
34. Akkas, B. Effect of hCl concentration on ZrB2 separation from a self-propagating high-temperature synthesis (ShS) product / B. Akkas, M. Alkan, B. Derin [et al.] // Materials Processing and Energy Materials. ― hoboken : John Wiley & Sons, 2011. ― P. 499‒504.
35. Ewais, E. M. M. Carbon based refractories / E. M. M. Ewais // J. Ceram. Soc. Jpn. ― 2004. ― Vol. 112, № 10. ― P. 517‒532.
36. Campos, K. S. The influence of B4C and MgB2 additions on the behavior of MgO‒C bricks / K. S. Campos, G. F. B. L. Silva, E. H. M. Nunes [et al.] // Ceram. Int. ― 2012. ― Vol. 38, № 7. ― P. 5661‒5667.
37. Nishiyama, K. Preparation of ultrafine boride powders by metallothermic reduction method / K. Nishiyama, T. Nakamura, S. Utsumi [et al.] // J. Phys. Conf. Ser. ― 2009. ― Vol. 176, № 1. ― P. 1‒8.
Дополнительные файлы
Для цитирования: Кампос К.С., Ленц е Сильва Ф.Б., Нуньес Э.Х., Васконселос В.Л. ПОЛУЧЕНИЕ ДИБОРИДОВ ЦИРКОНИЯ, ТИТАНА И МАГНИЯ МЕТАЛЛОТЕРМИЧЕСКИМ ВОССТАНОВЛЕНИЕМ. Новые огнеупоры. 2013;(10):37-43. https://doi.org/10.17073/1683-4518-2013-10-37-43
For citation: Campos K.S., Lenz e Silva G. F.B., Nunes E.H., Vasconcelos W.L. PREPARATION OF ZIRCONIUM, TITANIUM, AND MAGNESIUM DIBORIDES BY METALLOTHERMIC REDUCTION. NOVYE OGNEUPORY (NEW REFRACTORIES). 2013;(10):37-43. (In Russ.) https://doi.org/10.17073/1683-4518-2013-10-37-43
Обратные ссылки
- Обратные ссылки не определены.