Open Access Open Access  Restricted Access Subscription Access

Optimization of key parameters influencing the sintering and densification of SiC/B4C ceramics as solar receiver materials


https://doi.org/10.17073/1683-4518-2025-3-114-124

Full Text:




Abstract

Solar receiver system plays a crucial role in determining the efficiency and long-term viability of sustainable energy solutions. This study addresses the challenge of achieving high densification in SiC/B4C composites system with the aim of producing high performance candidate suitable as solar receiver material for solar thermal applications. To optimize high performance and densification of this system, several controlling parameters have been investigated in terms of phase composition, sintering temperature, sintering time and additives. Hence, various SiC/B4C ceramic composites with varying B4C content (0‒50 wt. %) were prepared by pressureless sintering method at different temperatures (1600, 1700, and 1750 °C) and different time (2, 4, and 6 hrs), with a controlled heating rate of 10 °C/min without and with using sintering additives of 5 wt. % graphite and 5 wt. % MgO + Al2O3. The results indicated that increasing sintering time and/or temperature alone is not enough to densify the carbides system. However, increasing them with using sintering additives gave the best performance in terms of phase composition, densification and microstructure. Moreover, the enhancement of the densification behavior of the sintered composites with using the sintering additives of graphite and MgO + Al2O3 was more significant and pronounced at higher sintering temperatures. The highest density achieved was 2.48 g/cm³, approximately 77 % of the theoretical density with using 5 wt. % MgO + Al2O3 at sintering temperature of 1750 °C for 2 hrs. This improved behavior is attributed to the enhanced diffusivity and the liquid phase formation, as confirmed by X-ray diffraction (XRD) analysis and microstructural evaluation. The produced carbide ceramics is expected to be a promising solar receiver material. Ill. 14. Ref. 40. Tab. 2.

About the Authors

Dina H. A. Besisa
Refractory & Ceramic Materials Department (RCMD), Central Metallurgical R&D Institute (CMRDI)
Russian Federation


A. A. El-Maddah
Refractory & Ceramic Materials Department (RCMD), Central Metallurgical R&D Institute (CMRDI)
Russian Federation


Yasser M. Z. Ahmed
Refractory & Ceramic Materials Department (RCMD), Central Metallurgical R&D Institute (CMRDI)
Russian Federation


Emad M. M. Ewais
Refractory & Ceramic Materials Department (RCMD), Central Metallurgical R&D Institute (CMRDI)
Russian Federation


References

1. Besisa, D. H. A. Inspection of thermal stress parameters of high temperature ceramics and energy absorber materials / D. H. A. Besisa, E. M. M. Ewais, E. A. Mohamed [et al.] // Solar Energy Materials and Solar Cells. ― 2019. ― Vol. 203. ― Article 110160.

2. Besisa, D. H. A. Thermoelectric properties and thermal stress simulation of pressureless sintered SiC/ AlN ceramic composites at high temperatures / D. H. A. Besisa, E. M. M. Ewais, E. A. M. Shalaby [et al.] // Solar Energy Materials and Solar Cells. ― 2018. ― Vol. 182. ― P. 302‒313.

3. Besisa, D. H. A. Thermal performance and mechanical durability of Al2O3/CuO ceramics as solar receiver materials for solar thermal applications / D. H. A. Besisa, E. M. M. Ewais, H. H. Mohamed // Ceram. Int. ― 2022.

4. Del Río, P. An overview of drivers and barriers to concentrated solar power in the European Union / P. del Río, C. Peñasco, P. Mir-Artigues // Renew. Sustain. Energy Rev. ― 2018. ― Vol. 81. ― P. 1019‒1029.

5. Poobalan, R. K. Recent trends and challenges in developing boride and carbide-based solar absorbers for concentrated solar power / R. K. Poobalan, H. C. Barshilia, B. Basu // Sol. Energy Mater. Sol. Cells. ― 2022. ― Vol. 245. ― Article 111876.

6. Casalegno, V. High-performance SiC-based solar receivers for CSP: component manufacturing and joining / V. Casalegno [et al.] // Materials (Basel). ― 2021. ― Vol. 14. ― P. 1‒17.

7. Kennedy, C. E. Review of mid- to high-temperature solar selective absorber materials. ― 2002.

8. Romaniello, P. Optical properties of bcc transition metals in the range 0‒40 eV / P. Romaniello, P. L. de Boeij, F. Carbone, D. van der Marel // Phys. Rev. B. ‒ Condens. Matter Mater. Phys. ― 2006. ― Vol. 73. ― P. 1‒16.

9. Ahmed, Y. M. Z. Effect of zirconia and iron on the mechanical properties of Al2O3/TiC composites processed using combined self-propagating synthesis and direct consolidation technique / Y. M. Z. Ahmed, Z. I. Zaki, D. H. A. Besisa [et al.] // Materials Science and Engineering : A. ― 2017. ― Vol. 696. ― P. 182‒189.

10. Fahrenholtz, W. G. Ultra-high temperature ceramics: materials for extreme environments / W. G. Fahrenholtz, G. E. Hilmas // Sci. Mater. ― 2017. ― Vol. 129. ― P. 94‒99.

11. Fahrenholtz, W. G. Ultra-high temperature ceramics: materials for extreme environment applications / W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee [et al.]. ― John Wiley & Sons, 2014.

12. Purwar, A. Thermo-structural design of ZrB2‒SiCbased thermal protection system for hypersonic space vehicles / A. Purwar, B. Basu // J. Am. Ceram. Soc. ― 2017. ― Vol. 100. ― P. 1618‒1633.

13. Al-Jothery, H. K. M. A review of ultra-high temperature materials for thermal protection system / H. K. M. Al-Jothery, T. M. B. Albarody, P. S. M. Yusoff [et al.] // IOP Conf. Ser. Mater. Sci. Eng. ― 2020. ― Vol. 863.

14. Ni, D. Advances in ultra-high temperature ceramics, composites, and coatings / D. Ni, Y. Cheng, J. Zhang [et al.] // J. Adv. Ceram. ― 2022. ― Vol. 11. ― P. 1‒56.

15. Sciti, D. Suitability of ultra-refractory diboride ceramics as absorbers for solar energy applications / D. Sciti, L. Silvestroni, L. Mercatelli [et al.] // Sol. Energy Mater. Sol. Cells. ― 2013. ― Vol. 109. ― P. 8‒16.

16. Sani, E. Compositional dependence of optical properties of zirconium, hafnium and tantalum carbides for solar absorber applications / E. Sani, L. Mercatelli, M. Meucci [et al.] // Sol. Energy. ― 2016. ― Vol. 131. ― P. 199‒207.

17. Yang, Y. Preparation of a novel TiN/TiNxOy/SiO2 composite ceramic films on aluminum substrate as a solar selective absorber by magnetron sputtering / Y. Yang [et al.] // J. Alloys Compd. ― 2020. ― Vol. 815. ― P. 1‒11.

18. Besisa, D. H. A. Investigation of microstructure and mechanical strength of SiC/AlN composites processed under different sintering atmospheres / D. H. A. Besisa, E. M. M. Ewais, Y. M. Z. Ahmed [et al.] // J. Alloys Compd. ― 2018. ― Vol. 756. ― P. 175‒181.

19. Besisa, D. H. A. Thermal shock resistance of pressureless sintered SiC/AlN ceramic composites / D. H. A. Besisa, E. M. M. Ewais, Y. M. Z. Ahmed [et al.] // Mater. Res. Express. ― 2018. ― Vol. 5 (1). ― Article 015506.

20. Besisa, D. H. A. Effect of sintering atmospheres on the processing of SiC/AlN ceramic composites / D. H. A. Besisa, E. M. M. Ewais, Y. M. Z. Ahmed [et al.] // Refract. Ind. Ceram. ― 2018. ― Vol. 58 (5). ― P. 552‒556.

21. Besisa, D. H. A. Black zirconia composites with enhanced thermal, optical and mechanical performance for solar energy applications / D. H. A. Besisa, E. M. M. Ewais // Solar Energy Materials & Solar Cells. ― 2021. ― Vol. 225. ― Article 111063.

22. Besisa, D. H. A. A comparative study of thermal conductivity and thermal emissivity of high temperature solar absorber of ZrO2/Fe2O3 and Al2O3/CuO ceramics / D. H. A. Besisa, E. M. M. Ewais, Y. M. Z. Ahmed // Ceram. Int. ― 2021. ― Vol. 47, № 20. ― P. 28252‒28259.

23. Sani, E. Ultra-refractory ceramics for hightemperature solar absorbers / E. Sani, L. Mercatelli, F. Francini [et al.] // Sci. Mater. ― 2011. ― Vol. 65. ― P. 775‒778.

24. Sani, E. Ultra-high temperature ceramics for solar receivers: Spectral and high-temperature emittance characterization / E. Sani, L. Mercatelli, D. Jafrancesco [et al.] // J. Eur. Opt. Soc. ― 2012. ― Vol. 7.

25. Sani, E. Hybrid B4C/TiCN aqueous nanofluids for solar absorber applications / E. Sani, M. R. Martina, J. P. Vallejo, L. Lugo // Sol. Energy Mater. Sol. Cells. ― 2023. ― Vol. 254. ― Article 112280.

26. Besisa, D. H. A. Densification and characterization of SiC‒AlN composites for solar energy applications / D. H. A. Besisa, E. M. M. Ewais, Y. M. Z. Ahmed [et al.] // Renewable Energy. ― 2018. ― Vol. 129, part A. ― P. 201‒213.

27. Zhang, W. A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide / W. Zhang // Adv. Colloid Interface Sci. ― 2022. ― Vol. 301. ― Article 102604.

28. Besisa, D. H. A. Optical, magnetic and electrical properties of new ceramics/lead silicate glass composites recycled from lead crystal wastes / D. H. A. Besisa, E. M. M. Ewais, Y. M. Z. Ahmed // Journal of Environmental Management. ― 2021. ― Vol. 285. ― Article 112094.

29. Liu, J. A. Continuum modeling of B4C densification during spark plasma sintering / J. A. Liu, F. Zeng, Zh. Zou [et al.] // J. Mater. Res. ― 2017. ― Vol. 32, № 17. ― P. 3425‒3433.

30. Clegg, W. J. Role of carbon in the sintering of borondoped silicon carbide / W. J. Clegg // J. Am. Ceram. Soc. ― 2000. ― Vol. 83, № 5. ― Р. 1039‒1043.

31. Stobierski, L. Sintering of silicon carbide I. Effect of carbon / L. Stobierski, A. Gubernat // Ceram. Int. ― 2003. ― Vol. 29, № 3. ― Р. 287‒292.

32. Suri, A. K. Synthesis and consolidation of boron carbide: A review / A. K. Suri, С. Subramanian, J. K. Sonber [et al.] // International Materials Reviews. ― 2010. ― Vol. 55, № 1. ― Р. 4‒38.

33. Zhang, W. Recent progress in B4C‒SiC composite ceramics: processing, microstructure, and mechanical properties / W. Zhang // Mater. Adv. ― 2023. ― № 15. ― P. 3140‒3191.

34. Williams, T. Development of pressureless sintered silicon carbide ‒ boron carbide composites for armour applications / T. Williams // (2016).

35. Mashhadi, M. Effect of Al addition on pressureless sintering of B4C / M. Mashhadi, E. Taheri-Nassaj, V. M. Sglavo [et al.] // Ceram. Int. ― 2009. ― Vol. 35. ― P. 831‒837.

36. Zhang, W. Progress in pressureless sintering of boron carbide ceramics ― a review / W. Zhang, S. Yamashita, H. Kita // Adv. Appl. Ceram. ― 2019. ― Vol. 118. ― P. 222‒239.

37. Guo, W. Effects of B4C on the microstructure and phase transformation of porous SiC ceramics / W. Guo, H. Xiao, J. Liu [et al.] // Ceram. Int. ― 2015. ― Vol. 41, № 9, part A. ― P. 11117‒11124.

38. Reimanis, I. A review on the sintering and microstructure development of transparent spinel (MgAl2O4) / I. Reimanis, H. J. Kleebe // J. Am. Ceram. Soc. ― 2009. ― Vol. 92. ― P. 1472‒1480.

39. Moberlychan, W. J. The roles of amorphous grain boundaries and the β-α transformation in toughening SiC / W. J. Moberlychan, J. J. Cao, L. C. De Jonghe // Acta Mater. ― 1998. ― Vol. 46. ― P. 1625‒1635.

40. Tahani, M. Molecular dynamics study of interdiffusion for cubic and hexagonal SiC/Al interfaces / M. Tahani, E. Postek, T. Sadowski // Crystals. ― 2023. ― Vol. 13. ― P. 1‒15.


Supplementary files

For citation: Besisa D.H., El-Maddah A.A., Ahmed Y.M., Ewais E.M. Optimization of key parameters influencing the sintering and densification of SiC/B4C ceramics as solar receiver materials. NOVYE OGNEUPORY (NEW REFRACTORIES). 2025;(3):114-124. https://doi.org/10.17073/1683-4518-2025-3-114-124

Views: 53

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)