Open Access Open Access  Restricted Access Subscription Access

The influence of technological parameters of cold gas-dynamic spraying of powders on an aluminum bond on the profile of single tracks during the formation of volumetric products


https://doi.org/10.17073/1683-4518-2025-1-41-46

Full Text:




Abstract

The article presents the results of a study of the dependence of individual track profiles during cold gas-dynamic spraying (CGDS) of aluminum-corundum composite powder on the nozzle speed, powder flow rate, and temperature during the creation of volumetric products. The dependence of the track profile on the scanning speed, which is a seconddegree polynomial, is established, and the step between tracks is determined to ensure a uniform product surface. The influence of the technological parameters of CGDS of composite powders on the functional properties of individual layers of the formed volumetric materials is studied. Ill. 7. Ref. 32. Tab. 1.

About the Authors

E. Yu. Gerashchenkova
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»
Russian Federation


D. A. Gerashchenkov
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»
Russian Federation


M. A. Markov
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»
Russian Federation


A. D. Bykova
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»
Russian Federation


References

1. Papyrin, A. Cold spray technology / A. Papyrin, V. Kosarev, S. Klinkov [et al.]. ― Amsterdam : Elsevier B.V., 2007. ― 328 p. DOI: 10.1016/B978-0-08-045155-8.X5000-5.

2. Assadi, H. Cold spraying ― а materials perspective / H. Assadi, H. Kreye, F. Gartner, T. Klassen // Acta Mater. ― 2016. ― Vol. 116. ― P. 382‒407. DOI: 10.1016/j.actamat.2016.06.034.

3. Davis, J. R. Cold spray process. Thermal spray technology / J. R. Davis // ASM International. ― 2004. ― P. 77‒84.

4. Tushinsky, L. I. Structure and properties of aluminum coatings obtained by the cold gas-dynamic spraying method / L. I. Tushinsky, A. V. Plokhov, N. S. Mochalina [et al.] // Thermophysics and Aeromechanics. ― 2006. ― Vol. 13, № 1. ― P. 125‒129. DOI: 10.1134/S153186990601014X.

5. Косарев, В. Ф. Газодинамическое напыление. Новые технологии и оборудование / В. Ф. Косарев, А. П. Алхимов // Обработка металлов (технология, оборудование, инструменты). ― 2003. ― № 3 (19). ― С. 28‒30.

6. Abu Bakar, I. A. Reflection and future perspectives in cold spray technology: a bibliometric analysis / I. A. Abu Bakar, N. I. Omar, Yu. Yusuf, T. Abdul Rahim // J. Therm. Spray Technol. ― 2023. ― Vol. 32, № 6. ― P. 1576‒1595. DOI: 10.1007/s11666-023-01612-3.

7. Irissou, E. Review on cold spray process and technology: Part I. Intellectual property / E. Irissou, J.-G. Legoux, A. N. Ryabinin [et al.] // J. Therm. Spray Technol. ― 2008. ― 17 (4). ― P. 495‒516.

8. Sansoucy, E. Properties of SiC-reinforced aluminum alloy coatings produced by the cold gas dynamic spraying process / E. Sansoucy, P. Marcoux, L. Ajdelsztajn, B. Jodoin // Surf. Coat. Technol. ― 2008. ― Vol. 202, № 16. ― P. 3988‒3996. DOI: 10.1016/j.surfcoat.2008.02.017.

9. Gerashchenkov, D. A. Tribolical study of cermet coatings Al‒Sn‒Zn‒Al2O3 for friction couples / D. A. Gerashchenkov, M. Y. Sobolev, M. A. Markov [et al.] // Journal of Friction and Wear. ― 2018. ― Vol. 39, № 6. ― P. 522‒527. DOI: 10.3103/S106836661806003X.

10. Markov, M. A. Formation of protective ceramicmetal coatings on steel-surfaces by microarc oxidation with electro-chemical deposition of nickel / M. A. Markov, A. V. Krasikov, D. A. Gerashchenkov [et al.] // Refract. Ind. Ceram. ― 2018. ― Vol. 58, № 6. ― P. 634‒639. DOI: 10.1007/s11148-018-0159-7.

11. Markov, M. A. Corrosion-resistant ceramic coatings that are promising for use in liquid metal environments / M. A. Markov, A. D. Kashtanov, A. V. Krasikov [et al.] // Key Eng. Mater., Switzerland. ― 2019. ― Vol. 822. ― P. 752‒759. DOI: 10.4028/www.scientific.net/KEM.822.752.

12. Bykova, A. D. Study of the formation of functional ceramic coatings on metals / A. D. Bykova, M. A. Markov, A. V. Krasikov [et al.] // J. Phys. : Conference Series. ― 2019. ― Vol. 1400. ― Article 055008. DOI: 10.1088/1742-6596/1400/5/055008.

13. Makarov, A. M. Study of the method of obtaining functional interest-metallic coatings based on Ni‒Ti reinforced with WC nanoparticles / A. M. Makarov, D. A. Gerashchenkov, S. E. Aleksandrov [et al.] // Key Eng. Mater., Switzerland. ― 2019. ― Vol. 822. ― P. 760‒767. DOI: 10.4028/www.scientific.net/KEM.822.760.

14. Markov, M. A. Study of the microarc oxidation of aluminum modified with silicon carbide particles / M. A. Markov, S. N. Perevislov, A. V. Krasikov [et al.] // Russ. J. Appl. Chem. ― 2018. ― Vol. 91, № 4. ― P. 543−549. DOI: 10.1134/S107042721804002X.

15. Алхимов, А. П. Холодное газодинамическое напыление: теория и практика / А. П. Алхимов, С. В. Клинков, В. Ф. Косарев, В. М. Фомин. ― М. : Физикоматематическая литература, 2010. ― 536 с.

16. Каширин, А. И. Метод газодинамического напыления металлических покрытий: развитие и современное состояние / А. И. Каширин, А. В. Шкодкин // Упрочняющие технологии и покрытия. ― 2007. ― № 12 (36). ― С. 22‒33.

17. Kuznetsov, Y. A. The use of cold spraying and microarc oxidation techniques for the repairing and wear resistance improvement of motor electric bearing shields / Y. A. Kuznetsov, I. N. Kravchenko, D. A. Gerashchenkov [et al.] // Energies. ― 2022. ― 15 (3). ― Article 912. DOI: 10.3390/en15030912.

18. Козлов, И. А. Холодное газодинамическое напыление покрытий (обзор) / И. А. Козлов, К. А. Лещев, А. А. Никифоров, С. А. Демин // Труды ВИАМ. ― 2020. ― № 8 (90). ― С. 77‒93. DOI: 10.18577/2307-6046-2020-0-8-77-93.

19. Архипов, В. Е. Структура и свойства покрытий, нанесенных газодинамическим напылением / В. Е Архипов, А. А. Дубравина, Л. И. Куксенова [и др.] // Упрочняющие технологии и покрытия. ― 2015. ― № 4 (124). ― С. 18‒24.

20. Sirvent, P. Improving cold sprayed Ti‒6Al‒4V coatings controlling processing parameters: effect on microstructure and scratch behaviour / P. Sirvent, M. A. Garrido-Maneiro, P. Poza // Wear. ― 2023. ― Vol. 532‒533. ― Article 205075. DOI: 10.1016/j.wear.2023.205075.

21. Li, W. Effects of spraying parameters and heat treatment temperature on microstructure and properties of single-pass and single-layer cold-sprayed Cu coatings on Al alloy substrate / W. Li, Na. Xue, L. Shao [et al.] // Surf. Coat. Technol. ― 2024. ― Vol. 490. ― Article 131184. DOI: 10.1016/j.surfcoat.2024.131184.

22. Архипов, В. Е. Структурно-фазовые превращения в покрытии на основе частиц меди и цинка, нанесенном газодинамическим напылением / В. Е. Архипов, Т. И. Муравьева, М. С. Пугачев, О. О. Щербакова // Металловедение и термическая обработка металлов. ― 2020. ― № 4 (778). ― С. 32‒36.

23. Chen, C. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties / C. Chen, L. Liu, R. Zhao [et al.] // J. Mater. Sci. Technol. ― 2021. ― Vol. 72. ― P. 39‒51. DOI: 10.1016/j.jmst.2020.07.038.

24. Nikbakht, R. Dynamic microstructure evolution in cold sprayed Ni‒Ti composite coatings / R. Nikbakht, B. Jodoin, M. Saadati [et al.] // Surf. Coat. Technol. ― 2021. ― Vol. 421. ― Article 127456. DOI: 10.1016/j.surfcoat.2021.127456.

25. Poza, P. Cold-sprayed coatings : мicrostructure, mechanical properties, and wear behaviour / P. Poza, M. A. Garrido-Maneiro // Prog. Mater. Sci. ― 2021. ― Vol. 121. ― Article 100839. DOI: 10.1016/j.pmatsci.2021.100839.

26. Klemm, A. Additive manufacturing of steel components by cold spraying / A. Klemm, F. Taherkhani, M. Gundel // Ce/Papers. ― 2023. ― Vol. 6, № 3‒4. ― P. 739‒744. DOI: 10.1002/cepa.2461.

27. Zhu, W. Integral numerical modeling of the deposition profile of a cold spraying process as an additive manufacturing technology / W. Zhu, X. Zhang, M. Zhang [et al.] // Progress in Additive Manufacturing. ― 2019. ― Vol. 4, № 4. ― P. 357‒370. DOI: 10.1007/s40964-018-0071-1.

28. Sakaki, K. The forefront of additive manufacturing using thermal spraying (Cold spraying) / K. Sakaki // Journal of the Surface Finishing Society of Japan. ― 2023. ― Vol. 74, № 5. ― P. 250‒255. DOI: 10.4139/sfj.74.250.

29. Macdonald, D. Cold spraying of armstrong process titanium powder for additive manufacturing / D. Macdonald, R. Fernandez, F. Delloro, B. Jodoin // J. Therm. Spray Technol. ― 2017. ― Vol. 26, № 4. ― P. 598‒609. DOI: 10.1007/s11666-016-0489-2.

30. Kosarev, V. F. Additive methods for forming functional surface layers. Cold spraying / V. F. Kosarev, S. V. Klinkov // Abstracts of 22th international conference on the methods of aerophysical research (ICMAR 2024), Novosibirsk, 2024. ― P. 69‒71. DOI: 10.53954/9785604990131_69.

31. Li, W. Solid-state additive manufacturing and repairing by cold spraying : а review / W. Li, K. Yang, X. Yang [et al.] // J. Mater. Sci. Technol. ― 2018. ― Vol. 34, № 3. ― P. 440‒457. DOI: 10.1016/j.jmst.2017.09.015.

32. Геращенков, Д. А. Исследование температуры потока в процессе холодного газодинамического напыления функциональных покрытий / Д. А. Геращенков, А. Ф. Васильев, Б. В. Фармаковский, А. Ч. Машек // Вопросы материаловедения. ― 2014. ― № 1 (77). ― С. 87‒96.


Supplementary files

For citation: Gerashchenkova E.Y., Gerashchenkov D.A., Markov M.A., Bykova A.D. The influence of technological parameters of cold gas-dynamic spraying of powders on an aluminum bond on the profile of single tracks during the formation of volumetric products. NOVYE OGNEUPORY (NEW REFRACTORIES). 2025;(1):41-46. https://doi.org/10.17073/1683-4518-2025-1-41-46

Views: 70

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)