Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Синтез порошка карбида бора с помощью плазмотрона косвенного действия и исследование свойств композита на его основе


https://doi.org/10.17073/1683-4518-2024-9-36-43

Полный текст:




Аннотация

Получены порошки карбида бора B4C безвакуумным методом с помощью плазмотрона косвенного действия. Исследованы зависимости влияния длительности плазменного воздействия от 60 до 180 с и массы шихты, содержащей порошки бора и углерода от 0,5 до 1,5 г, на фазовый состав продукта синтеза. Методом искрового плазменного спекания консолидирован композит на основе синтезированного карбида бора с добавкой карбида кремния в количестве 15 %. Изучены механические и теплофизические свойства композита B4C‒15 % SiC. Кроме того, исследованы окислительные свойства полученного композита в диапазоне 300‒900 о С.


Об авторах

Ю. З. Васильева
ФГАОУ «Национальный исследовательский Томский политехнический университет»
Россия

К. т. н.

Томск



Ж. С. Болатова
ФГАОУ «Национальный исследовательский Томский политехнический университет»
Россия
Томск


Р. Д. Герасимов
ФГАОУ «Национальный исследовательский Томский политехнический университет»; ФГБОУ ВО «Томский государственный архитектурно-строительный университет»
Россия
Томск


В. В. Шеховцов
ФГБОУ ВО «Томский государственный архитектурно-строительный университет»
Россия

К. т. н.

Томск



А. Я. Пак
ФГАОУ «Национальный исследовательский Томский политехнический университет»
Россия

Д. т. н.

Томск



Список литературы

1. Radev, D. D. Classical and contemporary synthesis methods of boron carbide powders / D. D. Radev, E. Ampaw // Comptes Rendus. ― 2015. ― Vol. 68, № 8. ― P. 945‒956.

2. Gao, S. A low cost, low energy, environmentally friendly process for producing high-purity boron carbide / S. Gao, X. Li, Sh. Wang [et al.] // Ceram. Int. ― 2019. ― Vol. 45, № 3. ― P. 3101‒3110.

3. Vijay, S. K. Synthesis of nanocrystalline boron carbide by sucrose precursor method-optimization of process conditions / S. K. Vijay, R. Krishnaprabhu, Ch. Varadarajan, S. Anthonysamy // Ceram. Int. ― 2018. ― Vol. 44, № 5. ― P. 4676‒4684.

4. Suri, A. K. Synthesis and consolidation of boron carbide: а review / A. K. Suri, C. Subramanian, J. K. Sonber [et al.] // Int. Mater. Rev. ― 2010. ― Vol. 55, № 1. ― P. 4‒38.

5. Wang, J. Initial investigation of B4C‒TiB2 composites as neutron absorption material for nuclear reactors / J. Wang, D. Ren, L. Chen [et al.] // J. Nucl. Mater. ― 2020. ― Vol. 539. ― Article 152275.

6. Chen, Y. Boron carbide and boron carbonitride thin films as protective coatings in ultra-high density hard disk drives / Y. Chen, Y.-W. Chung, Sh.-Y. Li // Surface and Coatings Technology. ― 2006. ― Vol. 200, № 12/13. ― P. 4072‒4077.

7. Thévenot, F. Boron carbide: а comprehensive review / F. Thévenot // J. Eur. Ceram. Soc. ― 1990. ― Vol. 6, № 4. ― P. 205‒225.

8. Gao, Y. Processing factors influencing the free carbon contents in boron carbide powder by rapid carbothermal reduction / Y. Gao, A. Etzold, T. Munhollon [et al.] // Diam. Relat. Mater. ― 2016. ― Vol. 61. ― P. 14‒20.

9. Ramos, A. S. High-energy ball milling of powder B‒C mixtures / A. S. Ramos, S. P. Taguchi, E. C. T. Ramos [et al.] // Mater. Sci. Eng. A. ― 2006. ― Vol. 422, № 1/2. ― P. 184‒188.

10. Samal, S. Thermal plasma technology: the prospective future in material processing / S. Samal // J. Clean. Prod. ― 2017. ― Vol. 142. ― P. 3131‒3150.

11. Arora, N. Arc discharge synthesis of carbon nanotubes: сomprehensive review / N. Arora, N. N. Sharma // Diam. Relat. Mater. ― 2014. ― Vol. 50. ― P. 135‒150.

12. Pak, A. Cubic SiC nanowire synthesis by DC arc discharge under ambient air conditions / A. Pak, A. Ivashutenko, A. Zakharova, Y. Vassilyeva // Surf. Coat. Technol. ― 2020. ― Vol. 387. ― Article 125554.

13. Vassilyeva, Y. Z. Synthesis of Mo2C-based material in DC arc discharge plasma under ambient air conditions / Y. Z. Vassilyeva, K. B. Larionov, S. D. Afonnikova [et al.] // Mater. Chem. Phys. ― 2023. ― Article 128805.

14. Gerasimov, R. D. On the possibility of synthesis of silicon carbide using an indirect-action plasma gun / R. D. Gerasimov, V. V. Shekhovtsov, Yu. Z. Vasil’eva [et al.] // J. Eng. Phys. Thermophys. ― 2024. ― Vol. 97, № 2. ― P. 463‒470.

15. Zhang, W. Progress in pressureless sintering of boron carbide ceramics: a review / W. Zhang, S. Yamashita, H. Kita // Adv. Appl. Ceram. ― 2019. ― Vol. 118, № 4. ― P. 222‒239.

16. Ekici, E. The machinability of Al/B4C composites produced by hot pressing based on reinforcing the element ratio / E. Ekici, M. Gülesin // Sci. Eng. Compos. Mater. ― 2016. ― Vol. 23, № 6. ― P. 743‒750.

17. Xiong, Y. Densification mechanism during reactive hot pressing of B4C‒ZrO2 mixtures / Y. Xiong, X. Du, M. Xiang [et al.] // J. Eur. Ceram. Soc. ― 2018. ― Vol. 38, № 12. ― P. 4167‒4172.

18. Wen, Q. High toughness and electrical discharge machinable B4C‒TiB2‒SiC composites fabricated at low sintering temperature / Q. Wen, Y. Tan, Zh. Zhong [et al.] // Mater. Sci. Eng. A. ― 2017. ― Vol. 701, № 6. ― P. 338‒343.

19. Malmal Moshtaghioun, B. Toughening of superhard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition / B. Malmal Moshtaghioun, A. L. Ortiz, D. Gómez-García, A. Domínguez-Rodríguez // J. Eur. Ceram. Soc. ― 2013. ― Vol. 33, № 8. ― P. 1395‒1401.

20. Zhang, X. Densification behaviour and mechanical properties of B4C‒SiC intergranular/intragranular nanocomposites fabricated through spark plasma sintering assisted by mechanochemistry / X. Zhang, Zh. Zhang, W. Weimin [et al.] // Ceram. Int. ― 2017. ― Vol. 43, № 2. ― P. 1904‒1910.

21. Uehara, M. SiC‒B4C composites for synergistic enhancement of thermoelectric property / M. Uehara, R. Shiraishi, A. Nogami [et al.] // J. Eur. Ceram. Soc. ― 2004. ― Vol. 24, № 2. ― P. 409‒412.

22. Thévenot, F. Sintering of boron carbide and boron carbide ‒ silicon carbide two-phase materials and their properties / F. Thévenot // J. Nucl. Mater. ― 1988. ― Vol. 152, № 2/3. ― P. 154‒162.

23. Zorzi, J. E. Hardness and wear resistance of B4C ceramics prepared with several additives / J. E. Zorzi, C. A. Perottoni, J. A. H. Da Jornada // Mater. Lett. ― 2005. ― Vol. 59, № 23. ― P. 2932‒2935.

24. Anselmi-Tamburini, U. Influence of synthesis temperature on the defect structure of boron carbide: Experimental and modeling studies / U. AnselmiTamburini, Z. A. Munir, Ya. Kodera [et al.] // J. Am. Ceram. Soc. ― 2005. ― Vol. 88, № 6. ― P. 1382‒1387.

25. Xu, H. Microstructural evolution in liquid-phasesintered SiC : Part I, Effect of starting powder / H. Xu, T. Bhatia, S. A. Deshpande [et al.] // J. Am. Ceram. Soc. ― 2001. ― Vol. 84, № 7. ― P. 1578‒1584.

26. Najafi, A. A novel route to obtain B4C nano powder via sol-gel method / A. Najafi, F. Golestani-Fard, H. R. Rezaie, N. Ehsani // Ceram. Int. ― 2012. ― Vol. 38, № 5. ― P. 3583‒3589.

27. Sahin, F. C. Spark plasma sintering of B4C‒SiC composites / F. C. Sahin, B. Apak, I. Akin [et al.] // Solid State Sci. ― 2012. ― Vol. 14, № 11/12. ― P. 1660‒1663.

28. Aygüzer, Yaşar Z. Improving fracture toughness of B4C‒SiC composites by TiB2 addition / Yaşar Z. Aygüzer, A. M. Celik, R. A. Haber // Int. J. Refract. Met. Hard Mater. ― 2022. ― Vol. 108, № 6.

29. Song, Q. Microstructure and self-healing mechanism of B4C‒TiB2‒SiC composite ceramic after pre-oxidation behaviour / Q. Song, Z. H. Zhang // Ceram. Int. ― 2022. ― Vol. 48, № 17. ― P. 25458‒25464.


Дополнительные файлы

Для цитирования: Васильева Ю.З., Болатова Ж.С., Герасимов Р.Д., Шеховцов В.В., Пак А.Я. Синтез порошка карбида бора с помощью плазмотрона косвенного действия и исследование свойств композита на его основе. Новые огнеупоры. 2024;(9):36-43. https://doi.org/10.17073/1683-4518-2024-9-36-43

For citation: Vasil’eva Y.Z., Bolatova Z.S., Gerasimov R.D., Shekhovtsov V.V., Pak A.Y. Synthesis of boron carbide powder using an indirect plasma torch and investigation of the properties of a composite based on it. NOVYE OGNEUPORY (NEW REFRACTORIES). 2024;(9):36-43. (In Russ.) https://doi.org/10.17073/1683-4518-2024-9-36-43

Просмотров: 115

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 1683-4518 (Print)