Open Access Open Access  Restricted Access Subscription Access

Mechanical properties of Ti3SiC2-based composites obtained by spark plasma sintering


https://doi.org/10.17073/1683-4518-2024-8-28-34

Full Text:




Abstract

Composite materials with different contents of the MAX phase Ti3SiC2 were obtained by a two-stage heat treatment of Ti / Si / C and Ti / Si / TiC powder mixtures. Solid phase vacuum sintering and spark plasma sintering (SPS) technologies were used for the heat treatment. The maximum content of Ti3SiC2 was achieved in composites prepared by vacuum sintering the composition 3Ti/1,2Si/2C at 1400 ◦C for 1 h with subsequent consolidation by SPS (1300 ◦C, pressure 50 MPa, holding time 5 min) with addition of 5 wt. % Si. The effect of phase composition and porosity on the mechanical properties of the obtained composites (hardness, flexural strength and elastic modulus) was investigated. The fracture of the composites was characterised as brittle and occurs by a mixed mechanism.


About the Authors

E. P. Sedanova
ФГАОУ ВО «Национальный исследовательский Томский политехнический университет»
Russian Federation


I. E. Arlashkin
ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)»; ФГБУН «ордена Трудового Красного Знамени Институт химии силикатов имени И.В. Гребенщикова Российской академии наук»
Russian Federation


S. N. Perevislov
ФГБУН «ордена Трудового Красного Знамени Институт химии силикатов имени И.В. Гребенщикова Российской академии наук»
Russian Federation


E. B. Kashkarov
ФГАОУ ВО «Национальный исследовательский Томский политехнический университет»
Russian Federation


M. S. Khorev
ФГАОУ ВО «Национальный исследовательский Томский политехнический университет»
Russian Federation


References

1. Dahlqvist, M. MAX phases ― рast, present, and future / M. Dahlqvist, M. W. Barsoum, J. Rosen // Mater. Today. ― 2024. ― Vol. 72. ― P. 1‒24. https://doi.org/10.1016/j.mattod.2023.11.010.

2. Peng, M. C. Facile synthesis of Ti3SiC2 powder by high energy ball-milling and vacuum pressureless heat-treating process from Ti‒TiC‒SiC‒Al powder mixtures / M. C. Peng, X. L. Shi, Z. W. Zhu // Ceram. Int. ― 2012. ― Vol. 38, iss. 3. ― P. 2027‒2033. https://doi.org/10.1016/j.ceramint.2011.10.038.

3. Dang, W. T. Influence of Cu on the mechanical and tribological properties of Ti3SiC2 / W. T. Dang, S. F. Ren, J. Zhou // Ceram. Int. ― 2016. ― Vol. 42, iss. 8. ― P. 9972‒9980. https://doi.org/10.1016/j.ceramint.2016.03.099.

4. Turki, F. Physico-chemical and mechanical properties of Ti3SiC2-based materials elaborated from SiC/Ti by reactive spark plasma sintering / F. Turki, H. Abderrazak, F. Schoenstein // J. Adv. Ceram. ― 2019. ― Vol. 8, iss. 1. ― P. 47‒61. https://doi.org/10.1007/s40145-018-0290-4.

5. Yang, D. Highly conductive wear resistant Cu/ Ti3SiC2(TiC/SiC) co-continuous composites via vacuum infiltration process / D. Yang, Y. Zhou, X. Yan [et al.] // J. Adv. Ceram. ― 2020. ― Vol. 9, iss. 1. ― P. 83‒93. https://doi.org/10.1007/s40145-019-0350-4.

6. He, G. Microstructure and mechanical properties of short-carbon-fiber/Ti3SiC2 composites / G. He, R. Guo, M. Li, Y. Yang // J. Adv. Ceram. ― 2020. ― Vol. 9, iss. 6. ― P. 716‒725. https://doi.org/10.1007/s40145-020-0408-3.

7. Zhang, J. F. Effect of TiC content on the microstructure and properties of Ti3SiC2‒TiC composites in situ fabricated by spark plasma sintering / J. F. Zhang, L. J. Wang, W. Jiang // Mater. Sci. Eng., A. ― 2008. ― Vol. 487, iss. 1/2. ― P. 137‒143. https://doi.org/10.1016/j.msea.2007.12.004.

8. Zhu, J. Synthesis of single-phase polycrystalline Ti3SiC2 and Ti3AlC2 by hot pressing with the assistance of metallic Al or Si / J. Zhu, B. Mei, X. Xu, J. Liu // Mater. Letters. ― 2004. ― Vol. 58, № 5. ― P. 588‒592. https://doi.org/10.1016/j.msea.2007.12.004.

9. El Saeed, M. A. Optimization of the Ti3SiC2 MAX phase synthesis / M. A. El Saeed, F. A. Deorsola, R. M. Rashad // International Journal of Refractory Metals and Hard Materials. ― 2012. ― Vol. 35. ― P. 127‒131. https://doi.org/10.1016/j.ijrmhm.2012.05.001.

10. Zou, Y. Rapid synthesis of single-phase Ti3AlC2 through pulse discharge sintering a TiH2/Al/TiC powder mixture / Y. Zou, Z. M. Sun, S. Tada, H. Hashimoto // Scripta materialia. ― 2007. ― Vol. 56, № 9. ― P. 725‒728. https://doi.org/10.1016/j.scriptamat.2007.01.026.

11. Sun, H. Y. The difference of synthesis mechanism between Ti3SiC2 and Ti3 AlC2 prepared from Ti/M/C (M = Al or Si) elemental powders by SHS technique / H. Y. Sun, X. Kong, Z. Z. Yi [et al.] // Ceram. Int. ― 2014. ― Vol. 40, № 8. ― P. 12977‒12981. https://doi.org/10.1016/j.ceramint.2014.04.159.

12. Wang, L. J. Rapid reactive synthesis and sintering of submicron TiC/SiC composites through spark plasma sintering / L. J. Wang, W. Jiang, L. D. Chen // J. Am. Ceram. Soc. ― 2004. ― Vol. 87, iss. 6. ― P. 1157‒1160. https://doi.org/10.1111/j.1551-2916.2004.01157.x.

13. Xu, J. Unraveling the mechanical and tribological properties of a novel Ti5Si3/TiC nanocomposite coating synthesized by a double glow discharge plasma technique / J. Xu, L. L. Liu, L. Jiang // Ceram. Int. ― 2013. ― Vol. 39, iss. 8. ― P. 9471‒9481. https://doi.org/10.1016/j.ceramint.2013.05.065.

14. Zhang, F. Effect of annealing temperature on microstructure and mechanical properties of plasma sprayed TiC‒Ti5Si3‒Ti3SiC2 composite coatings / F. Zhang, L. Zhao, G. Yu [et al.] // Surf. Coat. Technol. ― 2021. ― Vol. 422. ― P. 127581. https://doi.org/10.1016/j.surfcoat.2021.127581.

15. Ghosh, N. C. Microstructure and wear behavior of spark plasma sintered Ti3SiC2 and Ti3SiC2‒TiC composites / N. C. Ghosh, S. P. Harimkar // Ceram. Int. ― 2013. ― Vol. 39, iss. 4. ― P. 4597‒4607. https://doi.org/10.1016/j.ceramint.2012.11.058.

16. Perevislov, S. N. The Ti3SiC2 MAX phases as promising materials for high temperature applications: formation under various synthesis conditions / S. N. Perevislov, T. V. Sokolova, V. L. Stolyarova / Mater. Chem. Phys. ― 2021. ― Vol. 267. ― P. 124625. https://doi.org/10.1016/j.matchemphys.2021.124625.

17. Быкова, А. Д. Влияние параметров синтеза на плотность и фазовый состав материалов на основе Ti3SiC2 / А. Д. Быкова, В. В. Семенова, С. Н. Перевислов, М. А. Марков // Новые огнеупоры. ― 2021. ― № 2. ― С. 30‒34. https://doi.org/10.17073/1683-4518-2021-2-30-34.

18. Перевислов, С. Н. Физико-механические свойства материалов на основе Ti3SiC2 / С. Н. Перевислов, И. Е. Арлашкин, А. С. Лысенков // Новые огнеупоры. ― 2022. ― № 4. ― С. 34‒39. https://doi.org/10.17073/1683-4518-2022-4-34-39.

19. Bandyopadhyay, D. The Ti‒Si‒C system (Titanium‒ Silicon‒Carbon) / D. Bandyopadhyay // Journal of Phase Equilibria and Diffusion. ― 2004. ― Vol. 25. ― P. 415‒420. https://doi.org/10.1007/s11669-004-0132-7.

20. Zhang, Z. F. Rapid synthesis of ternary carbide Ti3SiC2 through pulse-discharge sintering technique from Ti/Si/TiC powders / Z. F. Zhang, Z. M. Sun, H. Hashimoto // Metall. Mater. Trans. A. ― 2002. ― Vol. 33, № 11. ― P. 3321‒3328. https://doi.org/10.1007/s11661-002-0320-1.

21. Racault, C. Solid-state synthesis and characterization of the ternary phase Ti3SiC2 / C. Racault, F. Langlais, R. Naslain // J. Мater. Sci. ― 1994. ― Vol. 29, № 13. ― P. 3384‒3392. https://doi.org/10.1007/BF00352037.


Supplementary files

For citation: Sedanova E.P., Arlashkin I.E., Perevislov S.N., Kashkarov E.B., Khorev M.S. Mechanical properties of Ti3SiC2-based composites obtained by spark plasma sintering. NOVYE OGNEUPORY (NEW REFRACTORIES). 2024;(8):28-34. https://doi.org/10.17073/1683-4518-2024-8-28-34

Views: 116

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)