Open Access Open Access  Restricted Access Subscription Access

Ceramic composite materials based on the MAX phase Ti3SiC2 obtained by SHS extrusion


https://doi.org/10.17073/1683-4518-2024-6-21-27

Full Text:




Abstract

Compact cylindrical rods 220 mm long and 4 mm in diameter, consisting of a ceramic composite material based on the MAX phase Ti3SiC2, strengthened by TiC and TiB2 particles, were obtained during the combustion of the initial components (titanium, silicon, soot and boron) in the SHS mode followed by high-temperature deformation. These conditions were implemented in the SHS extrusion method. The influence of the initial composition on the structure, phase composition and mechanical characteristics (nanohardness, elastic modulus, bending strength) of the resulting materials has been established. It has been established that the formation of the Ti3SiC2 MAX phase occurs at the boundary with the TiC phase due to the diffusion of silicon under the influence of high temperatures (up to 1980‒2125 °C) accompanying the SHS extrusion process.


About the Authors

А. S. Konstaninov
ФГБУН «Институт структурной макрокинетики и проблем материаловедения имени А. Г. Мержанова Российской академии наук (ИСМАН)»
Russian Federation


А. P. Chizhikov
ФГБУН «Институт структурной макрокинетики и проблем материаловедения имени А. Г. Мержанова Российской академии наук (ИСМАН)»
Russian Federation


М. S. Antipov
ФГБУН «Институт структурной макрокинетики и проблем материаловедения имени А. Г. Мержанова Российской академии наук (ИСМАН)»
Russian Federation


References

1. Maslov, A. A. Synchrotron radiation and X-Ray diffraction study of Ti‒Al‒C-based coatings / A. A. Maslov, A. Yu. Nazarov, A. A. Nikolaev [et al.] // Inorg. Mater. Appl. Res. ― 2023. ― Vol. 14. ― №. 5. ― P. 1482‒1486. https://doi.org/10.1134/S207511332305026X.

2. Zou, Q. Effects of Ti3SiC2 on microstructure and properties of TiC0.4 enhanced TiAl matrix composites / Q. Zou, L. Bu, Y. Li [et al.] // Mater. Chem. Phys. ― 2023. ― Vol. 297. ― Article 127330. https://doi.org/10.1016/j.matchemphys.2023.127330.

3. Kwon, H. Fabrication of SiCf/Ti3SiC2 by the electrophoresis of highly dispersed Ti3SiC2 powder / H. Kwon, X. Zhou, D. Yoon // Ceram. Int. ― 2020. ― Vol. 46, № 11. ― P. 18168‒18174. https://doi.org/10.1016/j.ceramint.2020.04.138.

4. Maslov, A. A. Advanced heat-resistant Y–Al–O and Ti‒Al‒C coatings / A. A. Maslov, A. Yu. Nazarov, K. N. Ramazanov [et al.] //Russ. Phys. J. ― 2023. ― Vol. 65. ― С. 1900‒1907. https://doi.org/10.1007/s11182-023-02849-9.

5. Liu, Z. Molten salt dynamic sealing synthesis of MAX phases (Ti3AlC2, Ti3SiC2 et al.) powder in air / Z. Liu, J. Xu, X. Xi // Ceram. Int. ― 2023. ― Vol. 49, № 1. ― P. 168‒178. https://doi.org/10.1016/j.ceramint.2022.08.325.

6. Назаров, А. Ю. Исследование фазовых превращений в двухслойном жаростойком покрытии Ti‒Al‒C + Y‒ Al‒O на жаропрочном никелевом сплаве / А. Ю. Назаров [и др.] // Front. Mat. Tech. ― 2023. ― № 4. ― С. 63‒71.

7. Chen, H. Effects of microfluidic morphologies on the interfacial microstructure and mechanical properties of Ti3SiC2 ceramic and pure copper brazed joints / H. Chen, S. Zhao, X. Nai // Ceram. Int. ― 2023. ― Vol. 49, № 10. ― P. 16370‒16378. https://doi.org/10.1016/j.ceramint.2023.01.239.

8. Yang, Z. Electrical conductivities and mechanical properties of Ti3SiC2 reinforced Cu-based composites prepared by cold spray / Z. Yang, J. Xu, Y. Qian // J. Alloys Compd. ― 2023. ― Vol. 946. ― Article 169473. https://doi.org/10.1016/j.jallcom.2023.169473.

9. Zhu, W. Low temperature and pressureless synthesis of high-purity Ti3SiC2 MAX phase from TiC via κAl2O3 addition through reactive melt infiltration / W. Zhu, Y. Ren, M. Li [et al.] // J. Eur. Ceram. Soc. ― 2024. ― Vol. 44, № 7. ― P. 4398‒4409. https://doi.org/10.1016/j.jeurceramsoc.2024.01.088.

10. Li, Y. First principles study of stability, electronic structure and fracture toughness of Ti3SiC2/TiC interface / Y. Li, X.Z. Zhang, S. Y. Zhang [et al.] // Vac. ― 2022. ― Vol. 196. ― Article 110745.

11. Alves, M. F. R. P. Preparation of TiC/Ti3SiC2 composite by sintering mechanical alloyed Ti‒Si‒C powder mixtures / M. F. R. P. Alves, C. dos Santos, B. X. de Freitas [et al.] // J. nanosci. nanotech. ― 2020. ― Vol. 20, № 7. ― P. 4580‒4586.

12. Lou, Z. In-situ fabrication and characterization of TiC matrix composite reinforced by SiC and Ti3SiC2 / Z. Lou, Y. Li, Q. Zou [et al.] // Ceram. Int. ― 2023. ― № 12. ― P. 20849‒20859. https://doi.org/10.1016/j.ceramint.2023.03.218.

13. Zhang, X. Improved mechanical properties of reaction-bonded SiC through in-situ formation of Ti3SiC2 / X. Zhang, D. Chen, Q. Luo [et al.] // Ceram. Int. ― 2023. ― Vol. 49, № 15. ― P. 32750‒32757. https://doi.org/10.1016/j.ceramint.2023.07.243.

14. Wu, J. Reaction mechanism and mechanical properties of SiC joint brazed by in-situ formation of Ti3SiC2 / J. Wu, J.Yan, H. Peng [et al.] // J. Eur. Ceram. Soc. ― 2024. ― Vol. 44, № 6. ― P. 3777‒3783. https://doi.org/10.1016/j.jeurceramsoc.2023.12.097.

15. Islak, B. Y. Synthesis and properties of TiB2/Ti3SiC2 composites / B. Y. Islak, D. Candar // Ceram. Int. ― 2021. ― Vol. 47, № 1. ― P. 1439‒1446. https://doi.org/10.1016/j.ceramint.2020.09.098.

16. Zou, W. J. Mechanical, thermal physical properties and thermal shock resistance of in situ (TiB2 + SiC)/ Ti3SiC2 composite / W. J. Zou, H. B. Zhang, J. Yang [et al.] // J. Alloys Compd. ― 2018. ― Vol. 741. ― P. 44‒50.

17. Севостьянов, Н. В. Высокотемпературное окисление материалов на основе MAX-фазы Ti3SiC2, синтезированных методом искрового плазменного спекания / Н. В. Севостьянов, О. В. Басаргин, В. Г. Максимов // Неорг. Матер. ― 2019. ― Т. 55, № 1. ― С. 11‒15. https://doi.org/10.1134/S0002337X19010111.

18. Csáki, Š. Preparation of Ti3SiC2 MAX phase from Ti, TiC, and SiC by SPS / Š. Csáki, F. Lukáč, J. Veverka // Ceram. Int. ― 2022. ― Vol. 48, № 19. ― P. 28391‒28395. https://doi.org/10.1016/j.ceramint.2022.06.149.

19. Chen, D. Mechanical performance and oxidation resistance of SiC castables with lamellar Ti3SiC2 coatings on SiC aggregates prepared by SPS / D. Chen, H. Gu, A. Huang [et al.] // J. Alloys Compd. ― 2019. ― Vol. 791. ― P. 461‒468. https://doi.org/10.1016/j.jallcom.2019.03.358.

20. Islak, B. Y. Evaluation of properties of spark plasma sintered Ti3SiC2 and Ti3SiC2/SiC composites / B. Y. Islak, E. Ayas // Ceram. Int. ― 2019. ― Vol. 45, № 9. ― P. 12297‒12306.

21. Magnus, C. Microstructures and intrinsic lubricity of in situ Ti3SiC2‒TiSi2‒TiC MAX phase composite fabricated by reactive spark plasma sintering (SPS) / C. Magnus, D. Cooper, L. Ma // Wear. ― 2020. ― Vol. 448/449. ― Article 203169. https://doi.org/10.1016/j.wear.2019.203169.

22. Galvin, T. Laser sintering of electrophoretically deposited (EPD) Ti3SiC2 MAX phase coatings on titanium / T. Galvin, N. C. Hyatt, W. M. Rainforth // Surf. Coat. Technol. ― 2019. ― Vol. 366. ― P. 199‒203. https://doi.org/10.1016/j.surfcoat.2019.03.031.

23. Magnus, C. Synthesis and microstructural evolution in ternary metalloceramic Ti3SiC2 consolidated via the Maxthal 312 powder route / C. Magnus, T. Galvin, L. Ma // Ceram. Int. ― 2020. ― Vol. 46, № 10. ― P. 15342‒15356. https://doi.org/10.1016/j.ceramint.2020.03.078.

24. Chahhou, B. Synthesis of Ti3SiC2 coatings onto SiC monoliths from molten salts / B. Chahhou, C. LabrugèreSarroste, F. Ibalot // J. Eur. Ceram. Soc. ― 2022. ― Vol. 42, № 13. ― P. 5484‒5492. https://doi.org/10.1016/j.jeurceramsoc.2022.05.054.

25. Xu, H. Microstructure and properties of plasma sprayed copper-matrix composite coatings with Ti3SiC2 addition / H. Xu, T. Fu, P. Wang // Surf. Coat. Technol. ― 2023. ― Vol. 460. ― Article 129434. https://doi.org/10.1016/j.surfcoat.2023.129434.

26. Xiong, Y. Fabrication of TiC coated short carbon fiber reinforced Ti3SiC2 composites: Process, microstructure and mechanical properties / Y. Xiong, H. Li, J. Huang // J. Eur. Ceram. Soc. ― 2022. ― Vol. 42, № 9. ― P. 3770‒3779. https://doi.org/10.1016/j.jeurceramsoc.2022.03.024.

27. Li, M. Novel WC‒Co‒Ti3SiC2 cemented carbide with ultrafine WC grains and improved mechanical properties / M. Li, M. Gong, Z. Cheng [et al.] // Ceram. Int. ― 2022. ― Vol. 48, № 15. ― P. 22335‒22342. https://doi.org/10.1016/j.ceramint.2022.04.239.

28. Bazhin, P. M. In-situ study of the process of selfpropagating high-temperature synthesis of titanium carbide with a nichrome binder / P. M. Bazhin, M. S. Antipov, A. S. Konstantinov // Mater. Lett. ― 2022. ― Vol. 308. ― Article 131086. https://doi.org/10.1016/j.matlet.2021.131086.

29. Vershinnikov, V. I. Formation of V2AlC MAX phase by SHS involving magnesium reduction of V2O5 / V. I. Vershinnikov, D. Yu. Kovalev // Ceram. Int. ― 2023. ― Vol. 49, № 4. ― P. 6063‒6067. https://doi.org/10.1016/j.ceramint.2022.10.134.

30. Bazhina, A. D. Materials based on the MAX phases of the Ti‒Al‒C system obtained under combustion and high-temperature shear deformation / A. D. Bazhina, A. S. Konstantinov, A. P. Chizhikov [et al.] // Mater. Lett. ― 2022. ― Vol. 318. ― Article 132196. https://doi.org/10.1016/j.matlet.2022.132196.

31. Prokopets, A. D. Structure and mechanical characteristics of a laminated Ti3AlC2 MAX phase-based composite material prepared by a free self-propagating high-temperature synthesis compression method / A. D. Prokopets, P. M. Bazhin, A. S. Konstantinov [et al.] // Inorg. Mater. ― 2021. ― Vol. 57, № 9. ― P. 937‒941. https://doi.org/10.1134/S0020168521090132.

32. Prokopets, A. D. General trends of structure formation in graded composite materials based on the Ti3AlC2 MAX-phase on titanium / A. D. Prokopets, A. S. Konstantinov, A. P. Chizhikov [et al.] // Inorg. Mater. ― 2020. ― Vol. 56, № 10. ― P. 1087‒1091. DOI: 10.1134/S002016852010012X.

33. Константинов, А. С. Изучение влияния высокотемпературного отжига на структуру и свойства композиционного материала на основе TiC/TiB2/Ti3SiC2 / А. С. Константинов, А. П. Чижиков, М. С. Антипов, Н. Ю. Хоменко // Новые огнеупоры. ― 2023. ― Т. 8. ― С. 48‒54. https://doi.org/10.17073/1683-4518-2023-8-48-53.

34. Chen, H. Effects of microfluidic morphologies on the interfacial microstructure and mechanical properties of Ti3SiC2 ceramic and pure copper brazed joints / H. Chen, S. Zhao, X. Nai // Ceram. Int. ― 2023. ― Vol. 49, № 10. ― P. 16370‒16378. https://doi.org/10.1016/j.ceramint.2023.01.239.

35. Yang, Z. Electrical conductivities and mechanical properties of Ti3SiC2 reinforced Cu-based composites prepared by cold spray / Z. Yang, J. Xu, Y. Qian // J. Alloys Compd. ― 2023. ― Vol. 946. ― Article 169473. https://doi.org/10.1016/j.jallcom.2023.169473.

36. Hanson, W. A. Ionizing vs collisional radiation damage in materials: separated, competing, and synergistic effects in Ti3SiC2 / W. A. Hanson, M. K. Patel, M. L. Crespillo [et al.] // Acta Mater. ― 2019. ― Vol. 50. ― P. 195‒205.

37. Bazhin, P. M. SHS extrusion of materials based on the Ti‒Al‒C MAX phase / P. M. Bazhin, A. M. Stolin // Dokl. Chem. ― 2011. ― Vol. 439. ― P. 237‒239. https://doi.org/10.1134/S0012500811080052.

38. Stolin, A. M. Production of large compact plates from ceramic powder materials by unconfined SHS compaction / A. M. Stolin, P. M. Bazhin, A. S. Konstantinov, M. I. Alymov // Dokl. Chem. ― 2018. ― Vol. 480. ― P. 136‒138. https://doi.org/10.1134/S0012500818060083.

39. Konstantinov, A. S. Influence of the component ratio in the Ti‒B system on the structure and properties of materials fabricated by SHS extrusion / A. S. Konstantinov, A. P. Chizhikov, M. S. Antipov [et al.] // Russ. J. Inorg. Mater. ― 2023. ― Vol. 68. ― № 6. ― P. 772‒778. https://doi.org/10.1134/S0036023623600302.

40. Konstantinov, A. S. Effect of high-temperature annealing on the structure and properties of a composite material based on TiC/TiB2/Ti3SiC2 / A. S. Konstantinov, A. P. Chizhikov, M. S. Antipov [et al.] // Refract. Ind. Ceram. ― 2024. ― Vol. 64, № 4. ― Р. 439‒443. https://doi.org/10.1007/s11148-024-00867-9.


Supplementary files

For citation: Konstaninov А.S., Chizhikov А.P., Antipov М.S. Ceramic composite materials based on the MAX phase Ti3SiC2 obtained by SHS extrusion. NOVYE OGNEUPORY (NEW REFRACTORIES). 2024;(6):21-27. https://doi.org/10.17073/1683-4518-2024-6-21-27

Views: 82

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)