Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Влияние высокотемпературного сдвигового деформирования на синтез композиционного материала TiB2‒ZrO2 в условиях свободного СВС-сжатия


https://doi.org/10.17073/1683-4518-2024-4-22-28

Полный текст:




Аннотация

Методом самораспространяющегося высокотемпературного синтеза (СВС) получены керамические материалы на основе TiB2 и стабилизированного ZrO2. Стабилизация высокотемпературных фаз ZrO2 осуществлялась за счет введения в исходную смесь Y2O3. Изучено влияние содержания Y2O3 на характеристики горения исследуемых материалов, а также на фазовый состав продуктов синтеза в интервале концентраций Y2O3 от 0 до 6,2 мас. %. Для изучения влияния высокотемпературного сдвигового деформирования на процесс синтеза методом свободного СВС-сжатия были получены компактные пластины размерами 50×50×7 мм на основе исследуемых составов. Установлено, что в результате синтеза материалов, полученных в условиях высокотемпературного сдвигового деформирования и без приложения давления, продукты реакции имеют разный фазовый состав. Полученные компактные пластины представляют собой композиционные материалы, состоящие из матрицы на основе стабилизированного ZrO2 с распределенными в ней частицами TiB2.


Об авторах

А. П. Чижиков
ФГБУН «Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук (ИСМАН)»
Россия

К. т. н.

г. Черноголовка Московской обл.



А. С. Жидович
ФГБУН «Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук (ИСМАН)»
Россия

К. т. н.

г. Черноголовка Московской обл.



М. С. Антипов
ФГБУН «Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук (ИСМАН)»
Россия

г. Черноголовка Московской обл.



А. С. Константинов
ФГБУН «Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук (ИСМАН)»
Россия

К. т. н.

г. Черноголовка Московской обл.



Список литературы

1. Nazari, K. Advanced manufacturing methods for ceramic and bioinspired ceramic composites: а review / K. Nazari, P. Tran, P. Tan [et al.] // Open Ceram. ― 2023. ― Vol. 15. ― Article 100399. https://doi.org/10.1016/j.oceram.2023.100399.

2. Panasyuk, G. P. A new method for synthesis of fine crystalline magnesium aluminate spinel / G. P. Panasyuk, I. V. Kozerozhets, M. N. Danchevskaya [et al.] // Dokl. Chem. ― 2019. ― Vol. 487, № 2. ― P. 218‒220. https://doi.org/10.1134/S0012500819080019.

3. Malinina, E. A. A new approach to the synthesis of nanocrystalline cobalt boride in the course of the thermal decomposition of cobalt complexes [Co(DMF)6]2+ with boron cluster anions / E. A. Malinina, I. I. Myshletsov, G. A. Buzanov [et al.] // Molecules. ― 2023. ― Vol. 28. ― Article 453. https://doi.org/10.3390/molecules28010453.

4. Selvarajan, L. Surface morphology and drilled hole accuracy of conductive ceramic composites Si3N4‒TiN and MoSi2‒SiC on EDMed surfaces / L. Selvarajan, K. Venkataramanan // Wear. ― 2023. ― Vol. 530/531. ― Article 204973. https://doi.org/10.1016/j.wear.2023.204973.

5. Zhong, Y. Insight into tuning of ZrO2 distribution and mechanical properties of directionally solidified Al2O3/(5Re0.2)AG/ZrO2 eutectic ceramic composites / Y. Zhong, Z. Li, X. Wang // Compos. B: Eng. ― 2023. ― Vol. 266. ― Article 111016. https://doi.org/10.1016/j.compositesb.2023.111016.

6. Liu, B. Fabrication and mechanical properties of TiN whisker toughening TiB2 based ceramic cutting tool composite / B. Liu, G. Cui, J. Sun [et al.] // Ceram. Int. ― 2024. ― Vol. 50. ― P. 1874‒1878. https://doi.org/10.1016/j.ceramint.2023.10.288.

7. Wang, X. Cutting performance and wear mechanisms of the graphene-reinforced Al2O3‒WC‒TiC composite ceramic tool in turning hardened 40Cr steel / X. Wang, J. Zhao, Y. Gan [et al.] // Ceram. Int. ― 2022. ― Vol. 48. ― P. 13695‒13705. https://doi.org/10.1016/j.ceramint.2022.01.251.

8. Wang, H. Strengthening of Al2O3‒C slide gate plate refractories with microcrystalline graphite / H. Wang, Y. Li, T. Zhu // Ceram. Int. ― 2017. ― Vol. 43. ― P. 9912‒9918. https://doi.org/10.1016/j.ceramint.2017.04.178.

9. Ban, J. Preparation and application of ZrB2‒ SiCw composite powder for corrosion resistance improvement in Al2O3-ZrO2‒C slide plate materials / J. Ban, C. Zhou, L. Feng [et al.] // Ceram. Int. ― 2020. ― Vol. 46. ― P. 9817‒9825. https://doi.org/10.1016/j.ceramint.2019.12.255.

10. Varghese, P. Plasma sprayed alumina-yttria composite ceramic coating for electrical insulation applications / P. Varghese, E. Vetrivendan, R. Krishnan [et al.] // Surf. Coat. Technol. ― 2021. ― Vol. 405. ― Article 126566. https://doi.org/10.1016/j.surfcoat.2020.126566.

11. Du, B. Ablation behavior of advanced TaSi2-based coating on carbon-bonded carbon fiber composite/ ceramic insulation tile in plasma wind tunnel / B. Du, C. Hong, X. Zhang [et al.] // Ceram. Int. ― 2018. ― Vol. 44. ― P. 3505‒3510. https://doi.org/10.1016/j.ceramint.2017.11.122.

12. Zhang, W. Preparation and properties of a porous ZrO2/SiZrBOC ceramic matrix composite with high temperature resistance and low thermal conductivity / W. Zhang, F. Shi, J. Wang [et al.] // J. Eur. Ceram. Soc. ― 2024. ― Vol. 44. ― P. 2329‒2337. https://doi.org/10.1016/j.jeurceramsoc.2023.11.007.

13. Wang, Y. Microstructure and properties of SrTiO3/ ZrO2 ceramic composites prepared through pressureless sintering / Y. Wang, J. Ye, J. Li [et al.] // Ceram. Int. ― 2024. ― Vol. 50. ― P. 1908‒1917. https://doi.org/10.1016/j.ceramint.2023.10.293.

14. Cao, W. Research on the drying kinetics for the microwave drying of Y2O3‒ZrO2 ceramic powder / W. Cao, J. Zhou, C. Ren [et al.] // JMR&T. ― 2023. ― Vol. 26. ― P. 4563‒4580. https://doi.org/10.1016/j.jmrt.2023.08.183.

15. Avdeeva, V. V. [Co(solv)6][B10H10] (solv = DMF and DMSO) for low-temperature synthesis of borides / V. V. Avdeeva, I. N. Polyakova, A. V. Vologzhanina [et al.] // Russ. J. Inorg. Chem. ― 2016. ― Vol. 61. ― P. 1125‒1134. https://doi.org/10.1134/S0036023616090023.

16. Zhang, K. Broadening the microstructure regime of Al2O3‒ZrO2 hypereutectic ceramic fabricated via laser powder bed fusion / K. Zhang, S. Li, T. Liu [et al.] // Smart Mater. Manuf. ― 2024. ― Vol. 2. ― Article 100048. https://doi.org/10.1016/j.smmf.2024.100048.

17. Fujii, S. Empirical interatomic potentials for ZrO2 and YSZ polymorphs: Application to a tetragonal ZrO2 grain boundary / S. Fujii, K. Shimazaki, A. Kuwabara // Acta Materialia. ― 2024. ― Vol. 262. ― Article 119460. https://doi.org/10.1016/j.actamat.2023.119460.

18. Liang, Z. Structural, mechanical and thermodynamic properties of ZrO2 polymorphs by first-principles calculation / Z. Liang, W. Wang, M. Zhang [et al.] // Phys. B: Condens. Matter. ― 2017. ― Vol. 511. ― P. 10‒19. https://doi.org/10.1016/j.physb.2017.01.025.

19. Mosavari, M. Nano-ZrO2: а review on synthesis methodologies / M. Mosavari, A. Khajehhaghverdi, R. M. Aghdam // Inorg. Chem. Commun. ― 2023. ― Vol. 157. ― Article 111293. https://doi.org/10.1016/j.inoche.2023.111293.

20. Liu, L. Continuous supercritical hydrothermal synthesis of stabilized ZrO2 nanocomposites: Doping mechanism of typical metals and transition elements / L. Liu, S. Wang, G. Jiang [et al.] // Mater. Today Chem. ― 2024. ― Vol. 35. ― Article 101902. https://doi.org/10.1016/j.mtchem.2024.101902.

21. Kozerozhets, I. V. Acquisition, properties, and application of nanosized magnesium oxide powders: an overview / I. V. Kozerozhets, G. P. Panasyuk, L. A. Azarova [et al.] // Theor. Found. Chem. Eng. ― 2021. ― Vol. 55. ― P. 1126‒1132. https://doi.org/10.1134/S004057952106004X.

22. Chen, G. Stability properties and structural characteristics of CaO-partially stabilized zirconia ceramics synthesized from fused ZrO2 by microwave sintering / G. Chen, Y. Ling, Q. Li [et al.] // Ceram. Int. ― 2020. ― Vol. 46. ― P. 16842‒16848. https://doi.org/10.1016/j.ceramint.2020.03.261.

23. Lv, M. Fabrication and mechanical properties of TiB2/ZrO2 functionally graded ceramics / M. Lv, W. Chen, C. Liu // IJRMHM. ― 2014. ― Vol. 46. ― P. 1‒5. https://doi.org/10.1016/j.ijrmhm.2014.04.019.

24. Basu, B. Processing and mechanical properties of ZrO2‒TiB2 composites / B. Basu, J. Vleugels, O. V. Biest // J. Eur. Ceram. Soc. ― 2005. ― Vol. 25. ― P. 3629‒3637. https://doi.org/10.1016/j.jeurceramsoc.2004.09.017.

25. Fattahi, M. On the simulation of spark plasma sintered TiB2 ultra high temperature ceramics: а numerical approach / M. Fattahi, M. N. Ershadi, M. Vajdi [et al.] // Ceram. Int. ― 2020. ― Vol. 46. ― P. 14787‒14795. https://doi.org/10.1016/j.ceramint.2020.03.003.

26. Baqiah, H. Nanostructure, optical, electronic, photoluminescence and magnetic properties of Co-doped ZrO2 sol–gel films / H. Baqiah, M. M. A. Kechik, J. Pasupuleti [et al.] // Results Phys. ― 2023. ― Vol. 55. ― Article 107194. https://doi.org/10.1016/j.rinp.2023.107194.

27. Díaz-Parralejo, A. Optical and mechanical characterization of sol-gel thin films of ZrO2 stabilized with different Y2O3-doping mol % / A. Díaz-Parralejo, D. Maya-Retamar, M. Calderón-Godoy [et al.] // Ceram. Int. ― 2023. ― Vol. 49. ― P. 19552‒19555. https://doi.org/10.1016/j.ceramint.2023.03.029.

28. Mohsen, Q. Effect of pH on hydrothermal synthesis of ZrO2 nanoparticles and their electrocatalytic activity for hydrogen production / Q. Mohsen, W. S. Al-Gethami, Z. Zaki [et al.] // Int. J. Electrochem. Sci. ― 2022. ― Vol. 17. ― Article 22073. https://doi.org/10.20964/2022.07.24.

29. Kozerozhets, I. V. Mechanism of the conversion of γ-Аl2О3 nanopowder into boehmite under hydrothermal conditions / I. V. Kozerozhets, G. P. Panasyuk, E. A. Semenov [et al.] // Inorg. Mater. ― 2020. ― Vol. 56. ― P. 716‒722. https://doi.org/10.1134/S002016852007009.

30. Liu, L. Supercritical hydrothermal synthesis of nano-ZrO2: Influence of technological parameters and mechanism / L. Liu, S. Wang, B. Zhang [et al.] // J. Alloys Compd. ― 2022. ― Vol. 898. ― Article 162878. https://doi.org/10.1016/j.jallcom.2021.162878.

31. Shon, I. J. Mechanochemical synthesis and fast consolidation of a nanostructured CoTi‒ZrO2 composite by high-frequency induction heating / I. J. Shon // Ceram. Int. ― 2016. ― Vol. 42. ― P. 13314‒13318. https://doi.org/10.1016/j.ceramint.2016.05.060.

32. Lapshin, O. V. Role of mixing and milling in mechanochemical synthesis (review) / O. V. Lapshin, E. V. Boldyreva, V. V. Boldyrev // Russ. J. Inorg. Chem. ― 2021. ― Vol. 66. ― P. 433‒453. https://doi.org/10.1134/S0036023621030116.

33. Chen, Y. Effect of sintering temperature on the microstructures and mechanical properties of ZrO2 ceramics fabricated by additive manufacturing / Y. Chen, J. Tan, J. Sun [et al.] // Ceram. Int. ― 2024. ― Vol. 50. ― P. 11392‒11399. https://doi.org/10.1016/j.ceramint.2024.01.039.

34. Jing, Q. Preparation of near fully dense (LaO1.5)x(ErO1.5)x(YO1.5)0.03‒0.5x(ZrO2)0.97‒x ceramics with restricted grain growth and high surface residual stress by hot pressing sintering at 950 °C / Q. Jing, J. Xing, S. Cui [et al.] // Ceram. Int. ― 2024. ― Vol. 50. ― P. 5796‒5805. https://doi.org/10.1016/j.ceramint.2023.11.385.

35. Lee, J. Mechanical properties of TiC reinforced MgO‒ZrO2 composites via spark plasma sintering / J. Lee, K.-B. Jang, S. Lee [et al.] // Ceram. Int. ― 2023. ― Vol. 49. ― P. 17255‒17260. https://doi.org/10.1016/j.ceramint.2023.02.091.

36. Chizhikov, A. P. Self-propagating high-temperature synthesis of ceramic material based on aluminum-magnesium spinel and titanium diboride / A. P. Chizhikov, A. S. Konstantinov, P. M Bazhin // Russ. J. Inorg. Chem. ― 2021. ― Vol. 66. ― P. 1115‒1120. https://doi.org/10.1134/S0036023621080039.

37. Tomilin, O. B. Preparation of luminophore CаTiO3:Pr3+ by self-propagating high-temperature synthesis / O. B. Tomilin, E. E. Muryumin, M. V. Fadin [et al.] // Russ. J. Inorg. Chem. ― 2022. ― Vol. 67. ― P. 431‒438. https://doi.org/10.1134/S0036023622040192.

38. Bazhin, P. M. Combustion of Ti‒Al‒C compacts in air and helium: a TRXRD study / P. M. Bazhin, D. Yu. Kovalev, M. A. Luginina [et al.] // Int. J. Self Propag. High Temp. Synth. ― 2016. ― Vol. 25. ― P. 30‒34. https://doi.org/10.3103/S1061386216010027.

39. Bazhin, P. Long-sized rods of Al2O3‒SiC‒TiB2 ceramic composite material obtained by SHS-extrusion: microstructure, X-ray analysis and properties / P. Bazhin, A. Chizhikov, A. Stolin [et al.] // Ceram. Int. ― 2021. ― Vol. 47. ― P. 28444‒28448. https://doi.org/10.1016/j.ceramint.2021.06.262.

40. Bazhin, P. M. Ceramic Ti‒B composites synthesized by combustion followed by high-temperature deformation / P. M. Bazhin, A. M. Stolin, A. S. Konstantinov [et al.] // Materials. ― 2016. ― Vol. 9. ― Article 1027. https://doi.org/10.3390/ma9121027.

41. Stolin, A. M. Deformation of SHS products under combustion conditions / A. M. Stolin, P. M. Bazhin, M. I. Alymov // Inorg. Mater. ― 2016. ― Vol. 52. ― P. 618‒624. https://doi.org/10.1134/S0020168516060169.

42. Prokopets, A. D. Structural features of layered composite material TiB2/TiAl/Ti6Al4V obtained by unrestricted SHS-compression / A. D. Prokopets, P. M. Bazhin, A. S. Konstantinov [et al.] // Mater. Lett. ― 2021. ― Vol. 300. ― Article 130165. https://doi.org/10.1016/j.matlet.2021.130165.

43. Bazhin, P. M. Structure, physical and mechanical properties of TiB‒40 wt. % Ti composite materials obtainedby unrestricted SHS compression / P. M. Bazhin, A. S. Konstantinov, A. P. Chizhikov [et al.] // Mater. Today Commun. ― 2020. ― Vol. 25. ― Article 101484. https://doi.org/10.1016/j.mtcomm.2020.101484.

44. Liu, T. A review of zirconia-based solid electrolytes / T. Liu, X. Zhang, X. Wang [et al.] // Ionics. ― 2016. ― Vol. 22. ― P. 2249‒2262. https://doi.org/10.1007/s11581-016-1880-1.

45. Wang, J. Comparison of corrosion behaviors and wettability of CMAS on Ta2O5‒Y2O3 co-stabilized ZrO2 and YSZ thermal barrier coatings / J. Wang, Y. Wang, X. Lu [et al.] // J. Eur. Ceram. Soc. ― 2023. ― Vol. 43. ― P. 5636‒5651. https://doi.org/10.1016/j.jeurceramsoc.2023.05.020.


Дополнительные файлы

Для цитирования: Чижиков А.П., Жидович А.С., Антипов М.С., Константинов А.С. Влияние высокотемпературного сдвигового деформирования на синтез композиционного материала TiB2‒ZrO2 в условиях свободного СВС-сжатия. Новые огнеупоры. 2024;(4):22-28. https://doi.org/10.17073/1683-4518-2024-4-22-28

For citation: Chizhikov A.P., Zhidovich A.S., Antipov M.S., Konstantinov A.S. Effect of high-temperature shear deformation on the synthesis of TiB2‒ZrO2 composite material under conditions of free SHS compression. NOVYE OGNEUPORY (NEW REFRACTORIES). 2024;(4):22-28. (In Russ.) https://doi.org/10.17073/1683-4518-2024-4-22-28

Просмотров: 54

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 1683-4518 (Print)