Open Access Open Access  Restricted Access Subscription Access

Comparative study of the structural parameters of reaction-sintered ceramics based on silicon carbide using digital materials science methods


https://doi.org/10.17073/1683-4518-2024-5-93-99

Full Text:




Abstract

Reaction-sintered ceramic materials were synthesized: silicon carbide and diamond-silicon carbide composite. The microstructure was studied and the physical and mechanical properties of composite ceramics were determined. It has been experimentally shown that the numerical parameters of the structure ― lacunarity and Voronoi entropy, obtained using digital materials science methods, allow a comparative assessment of the homogeneity of the ceramic structure and substantiation of its strength advantages.


About the Authors

M. A. Markov
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»
Russian Federation


A. G. Chekuryaev
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»; ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)»
Russian Federation


A. N. Belyakov
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»
Russian Federation


A. N. Nikolaev
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»
Russian Federation


D. A. Dyuskina
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»
Russian Federation


A. D. Bykova
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»
Russian Federation


M. M. Sychev
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»; ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)»
Russian Federation


References

1. Гнесин, Г. Г. Карбидокремниевые материалы / Г. Г. Гнесин. ― М. : Металлургия, 1977. ― 216 с.

2. Гаршин, А. П. Керамика для машиностроения / А. П. Гаршин, В. М. Гропянов, Г. П. Зайцев, С. С. Семенов. ― М. : Научтехлитиздат, 2003. ― 384 с.

3. Briggs, J. Engineering ceramics in Europe and the USA / J. Briggs. ― Enceram : Menith Wood. UK, Worcester, 2011. ― 331 р.

4. Belyakov, A. N. Contemporary materials and their application in the construction of special engineering high-temperature objects / A. N. Belyakov, M. A. Markov, I. N. Kravchenko [et al.] // Refract. Ind. Ceram. ― 2024. ― Vol. 64, № 3. ― P. 256‒264. DOI: 10.1007/s11148-024-00835-3.

5. Markov, M. A. Development of novel ceramic construction materials based on silicon carbide for products of complex geometry / M. A. Markov, A. V. Krasikov, I. N. Kravchenko [et al.] // Journal of Machinery Manufacture and Reliability. ― 2021. ― Vol. 50, № 2. ― P. 158‒163. DOI: 10.3103/S1052618821020096.

6. Belyakov, A. N. A comparative study of methods for obtaining silicon carbide ceramic materials / A. N. Belyakov, M. A. Markov, D. A. Dyuskina [et al.] // Refract. Ind. Ceram. ― 2023. ― Vol. 64, № 3. ― P. 299‒310. DOI: 10.1007/s11148-024-00842-4.

7. Markov, M. A. Methods of forming geometrically complex manufactured products from silicon-carbide based, heat-resistant, ceramic materials / M. A. Markov, A. N. Belyakov, D. A. Dyuskina [et al.] // Glass and Ceramics. ― 2023. ― Vol. 80, № 7/8. ― P. 277‒282. DOI: 10.1007/s10717-023-00598-2.

8. Belyakov, A. N. Investigation of the reaction-sintered B4C‒SiC materials produced by hot slip casting / A. N. Belyakov, M. A. Markov, A. N. Chekuryaev [et al.] // Glass Physics and Chemistry. ― 2023. ― Vol. 49, № 3. ― P. 306‒313. DOI: 10.1134/S1087659623600060.

9. Belyakov, A. N. Investigation of the structure and physicomechanical characteristics of reaction-sintered materials B4C‒SiC / A. N. Belyakov, M. A. Markov, S. N. Perevislov [et al.] // Refract. Ind. Ceram. ― 2023. ― Vol. 64, № 1. ― P. 67‒70. DOI: 10.1007/s11148-023-00806-0.

10. Gordeev, S. K. SiC-Skeleton cemented diamond a novel engineering material with unique properties / S. K. Gordeev, S. G. Zhukov, L. V. Danchukova [et al.] // 24th Annual conference on composites, advanced ceramics, materials, and structures: A: ceramic engineering and science proceedings. ― Hoboken, NJ, USA : John Wiley & Sons, Inc., 2000. ― P. 753‒760. DOI: 10.1002/9780470294628.ch90.

11. Mlungwane, K. The development of a diamondsilicon carbide composite material / K. Mlungwane, I. J. Sigalas, M. Herrmann // Ind. Diamond Rev. ― 2005. ― № 4. ― P. 62‒65.

12. Mlungwane, K. The low-pressure infiltration of diamond by silicon to form diamond-silicon carbide composites / K. Mlungwane, M. Herrmann, I. Sigalas // J. Eur. Ceram. Soc. ― 2008. ― Vol. 28, № 1. ― P. 321‒326. DOI: 10.1016/j.jeurceramsoc.2007.06.010.

13. Zhu, C. Preparation of Si–diamond–SiC composites by in-situ reactive sintering and their thermal properties / C. Zhu, J. Lang, N. Ma // Ceram. Int. ― 2012. ― Vol. 38, № 8. ― P. 6131‒6136. DOI: 10.1016/j.ceramint.2012.04.062.

14. Yang, Z. Infiltration mechanism of diamond / SiC composites fabricated by Si-vapor vacuum reactive infiltration process / Z. Yang, X. He, M. Wu [et al.] // J. Eur. Ceram. Soc. ― 2013. ― Vol. 33, № 4. ― P. 869‒878. DOI: 10.1016/j.jeurceramsoc.2012.09.010.

15. Perevislov, S. N. The influence of dispersed composition of SiC on the physico-mechanical properties of reactive-sintered silicon carbide / S. N. Perevislov, M. V. Tomkovich, M. A. Markov [et al.] // Journal of Machinery Manufacture and Reliability. ― 2020. ― Vol. 49, № 6. ― Р. 511‒517. DOI: 10.3103/S1052618820060072.

16. Shevchenko, V. Yu. Microstructure and properties of composite materials diamond‒silicon carbide / V. Yu. Shevchenko, S. N. Perevislov // Refract. Ind. Ceram. ― 2022. ― Vol. 62, № 5. ― P. 548‒553. DOI: 10.1007/s11148-022-00640-w.

17. Dyuskina, D. A. Effect of the carbon component on the strength of reaction-sintered silicon–carbide ceramics / D. A. Dyuskina, M. A. Markov, I. N. Kravchenko [et al.] // Journal of Machinery Manufacture and Reliability. ― 2024. ― Vol. 53, № 2. ― P. 121‒126. DOI: 10.1134/S1052618824020055.

18. Markov, M. A. High-temperature bending tests of reaction-sintered silicon carbide-based ceramic materials / M. A. Markov, S. N. Vikhman, A. N. Belyakov [et al.] // Russ. J. Appl. Chem. ― 2023. ― Vol. 96, № 1. ― P. 16‒20. DOI: 10.1134/S1070427223010032.

19. Sychov, M. M. Digital materials science: numerical characterization of steel microstructure / M. M. Sychov, A. G. Chekuryaev, S. P. Bogdanov, P. A. Kuznetsov // Research and education: traditions and innovations. Inter-Academia. Lecture notes in networks and systems. ― 2021. ― Vol. 422. DOI: 10.1007/978-981-19-0379-3_15.

20. Вырикова, А. Д. Цифровое материаловедение в интересах авиаиндустрии / А. Д. Вырикова // Композитный мир. ― 2021. ― № 3 (96). ― С. 22, 23.

21. Огородникова, О. М. О проблемах интеграции вычислительного материаловедения в цифровое машиностроение / О. М. Огородникова // Информационные технологии в проектировании и производстве. ― 2014. ― № 2 (154). ― С. 30‒34.

22. Кочетов, И. И. Национальные вызовы в цифровом материаловедении / И. И. Кочетов // Физическое материаловедение : сб. материалов XI международной школы, Тольяттинский государственный университет. ― 2023. ― С. 133, 134.

23. Bormashenko, E. Characterization of self-assembled 2D patterns with voronoi entropy / E. Bormashenko, M. Frenkel, A. Vilk [et al.] // Entropy. ― 2018. ― Vol. 20, № 12. ― P. 956. DOI: 10.3390/e20120956.

24. Schindelin, J. Fiji: an open-source platform for biological-image analysis / J. Schindelin, I. ArgandaCarreras, E. Frise [et al.] // Nature Methods. ― 2012. ― Vol. 9, № 7. ― P. 676‒682. DOI: 10.1038/nmeth.2019.

25. Abramoff, M. D. Image processing with ImageJ / M. D. Abramoff, P. J. Magalhaes, S. J. Ram // Biophotonics International. ― 2003. ― Vol. 11, № 7. ― P. 36‒42.

26. Khmelnitsky, R. A. Transformation of diamond to graphite under heat treatment at low pressure / R. A. Khmelnitsky, A. A. Gippius // Phase Transitions. ― 2014. ― Vol. 87, № 2. ― P. 175‒192. DOI: 10.1080/01411594.2013.807429.

27. Shevchenko, V. Y. New chemical technologies based on Turing reaction–diffusion processes / V. Y. Shevchenko, M. V. Kovalchuk, A. S. Oryshchenko, S. N. Perevislov // Doklady Chemistry. ― 2021. ― Vol. 496, № 2. ― P. 28‒31. DOI: 10.1134/S0012500821020038.

28. Shevchenko, V. Y. Physicochemical interaction processes in the carbon (diamond)–silicon system / V. Y. Shevchenko, S. N. Perevislov, V. L. Ugolkov // Glass Phys. Chem. ― 2021. ― Vol. 47, № 3. ― Р. 197‒208. DOI: 10.1134/s108765962103010x.

29. Shevchenko, V. Y. Reaction–diffusion mechanism of synthesis in the diamond–silicon carbide system / V. Y. Shevchenko, S. N. Perevislov // Russ. J. Inorg. Chem. ― 2021. ― Vol. 66, № 8. ― Р. 1107‒1114. DOI: 10.1134/S003602362108026X.

30. Perevislov, S. N. Effect of SiC dispersed composition on physical and mechanical properties of reactionsintered silicon carbide / S. N. Perevislov, M. A. Markov, A. V. Krasikov, A. D. Bykova // Refract. Ind. Ceram. ― 2020. ― Vol. 61, № 2. ― P. 211‒215. DOI: 10.1007/s11148-020-00458-4.

31. Perevislov, S. N. Silicon carbide liquid-phase sintering with various activating agents / S. N. Perevislov, M. V. Tomkovich, A. S. Lysenkov // Refract. Ind. Ceram. ― 2019. ― Vol. 59. ― P. 522‒527. DOI: 10.1007/s11148-019-00265-6.


Supplementary files

For citation: Markov M.A., Chekuryaev A.G., Belyakov A.N., Nikolaev A.N., Dyuskina D.A., Bykova A.D., Sychev M.M. Comparative study of the structural parameters of reaction-sintered ceramics based on silicon carbide using digital materials science methods. NOVYE OGNEUPORY (NEW REFRACTORIES). 2024;(5):93-99. https://doi.org/10.17073/1683-4518-2024-5-93-99

Views: 88

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)