Open Access Open Access  Restricted Access Subscription Access

Resource- and energy-saving control of the steelmaking converter process, taking into account waste recycling


https://doi.org/10.17073/1683-4518-2024-5-39-55

Full Text:




Abstract

With the development of the energy control system of metallurgical enterprises, the urgency of solving the problem of resource- and energy-saving control of steelmaking processes increases, taking into account the reconfiguration of production to a new task, intensification of the processes of recycling of raw materials and materials, as well as reducing the waste intensity of production. One of the tools for solving the problem of resource- and energy saving of steelmaking production is the creation of a computer system that allows to analyze the state of the refractory lining of the converter, calculation of the material and thermal balances, the quantitative characteristics of slag corrosion, the amount of slag-forming materials, as well as predict the phase and chemical composition of the slag in order to impart the properties necessary in the production of mineral binders and other building materials. The computer system allows to identify complex fuzzy relation-ships between process parameters and issue recommendations on resource- and energy-saving control of the converter process, taking into account the waste recycling. Testing of the computer system according to the data of the enterprises CherMF (PJSC Severstal) and PJSC NLMF confirmed its operability and the possibility of use at metallurgical enterprises.


About the Authors

T. B. Chistyakova
ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)», кафедра систем автоматизированного проектирования и управления, лаборатория мирового уровня
Russian Federation


I. V. Novozhilova
ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)», кафедра систем автоматизированного проектирования и управления, лаборатория мирового уровня
Russian Federation


V. V. Kozlov
ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)», кафедра химической технологии тугоплавких неметаллических и силикатных материалов
Russian Federation


A. P. Shevchik
ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)», кафедра химической технологии тугоплавких неметаллических и силикатных материалов
Russian Federation


References

1. Danilov, N. Energy problems of the rational use of the economic potential of the region / N. Danilov, V. Silin, V. Dobrodey, V. Popov // Energy Production and Management in the 21st Century. ― 2014. ― Vol. 190. ― P. 419‒423. https://doi.org/10.2495/EQ140401.

2. Pavlov, A. Analysis of slag mode of blast furnace melting using model decision support systems / A. Pavlov, N. Spirin, V. Beginyuk [et al.] // Izvestiya. Ferrous Metallurgy. ― 2022. ― Vol. 65, № 6. ― P. 413‒420. https://doi.org/10.17073/0368-0797-2022-6-413-420.

3. Lisienko, V. G. Safe and energy-efficient thermal modes of the mine air heating systems / V. G. Lisienko, Yu. K. Malikov, A. A. Titaev, E. V. Khodakov // Occupational Safety in Industry. ― 2022. ― № 2. ― P. 81‒87. https://doi.org/10.24000/0409-2961-2022-2-81-87.

4. Lisienko, V. Energy benefits of the coke-free production of ferrous metals / V. Lisienko, Ya. Shchelokov, A. Lapteva // Steel in Translation. ― 2008. ― Vol. 38. ― P. 733‒738. https://doi.org/10.3103/S0967091208090088.

5. Kazarinov, L. A. Method for stabilizing blast furnace process thermal state / L. Kazarinov, T. Barbasova, E. Rozhko // Advances in Automation II. ― 2021. ― P. 22‒31. https://doi.org/10.1007/978-3-030-71119-1_3.

6. Kolesnikova, O. Automation of steam boiler load regulation at the electric power station of an iron and steel enterprise / O. Kolesnikova, L. Kazarinov, R. Prosoedov // 2019 IEEE Russian Workshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI), 2019. ― P. 110‒115. https://doi.org/10.1109/PEAMI.2019.8915411.

7. Giampieri, A. An integrated smart thermo-chemical energy network / A. Giampieri, S. Roy, S. K. Vijayalakshmi [et al.] // Renewable and Sustainable Energy Reviews. ― 2022. ― Vol. 168. ― Article 112869. https://doi.org/10.1016/j.rser.2022.112869.

8. Mohapatra, J. Dual stabilization heat treatment in a trip assisted steel to realize third generation advanced high strength steel properties / J. Mohapatra, D. S. Kumar // Advances in Automobile Engineering. ― 2022. ― Vol. 11, № 5. ― Article 1000201. DOI: 10.35248/2167-7670.22.11.201.

9. Hao, J. Regulation of bioinspired ion diodes: From fundamental study to blue energy harvesting / J. Hao, R. Wu, J. Zhou [et al.] // Nano Today. ― 2022. ― Vol. 46. ― Article 101593. https://doi.org/10.1016/j.nantod.2022.101593.

10. Pitkälä, J. A Study of the effect of alloying elements and temperature on nitrogen solubility in industrial stainless steelmaking / J. Pitkälä, L. Holappa, A. Jokilaakso // Metallurgical and Materials Transactions B. ― 2022. ― Vol. 53. ― P. 2364‒2376. https://doi.org/10.1007/s11663-022-02534-1.

11. Kozlov, V. V. Modeling of the phase composition of refractory and slag systems, optimization of slag adjustment, and stabilization of secondary steelmaking slags / V. V. Kozlov, A. P. Shevchik, S. A. Suvorov [et al.] // Refract. Ind. Ceram. ― 2019. ― Vol. 59, № 5. ― P. 502‒506. https://doi.org/10.1007/s11148-019-00262-9.

12. Borovik, S. Kinetic aspects of the thermal degradation of a temporary binder modified with vitreous molasses for use in making high-temperature periclase refractories / S. Borovik, G. A. Lysova, A. M. Chuklai // Refract. Ind. Ceram. ― 2014. ― Vol. 54, № 6. ― P. 479‒484. https://doi.org/10.1007/s11148-014-9637-8.

13. Metelkin, A. Optimization of the slag conditions in a ladle furnace / A. Metelkin, O. Sheshukov, M. Saveliev [et al.] // Metallurgist. ― 2022. ― Vol. 66. ― P. 1‒4. https://doi.org/10.1007/s11015-022-01371-6.

14. Aneziris, C. G. Microstructure evaluation of MgO‒C refractories with TiO2- and Al-additions / C. G. Aneziris, J. Hubálková, R. Barabás // J. Eur. Ceram. Soc. ― 2007. ― Vol. 27. ― P. 73‒78. https://doi.org/10.1016/j.jeurceramsoc.2006.03.001.

15. Sadrnezhaad, S. K. Oxidation mechanism of C in MgO‒C refractory bricks / S. K. Sadrnezhaad, S. Mahshid, B. Hashemi, A. Nemati // J. Am. Ceram. Soc. ― 2006. ― Vol. 89. ― P. 1308‒1316. https://doi.org/10.1111/j.1551-2916.2005.00863.x.

16. Hocquet, S. Characterisation of oxidation phenomena in carbon containing refractory materials for metallurgy / S. Hocquet, S. André, J.-P. Erauw [et al.] // In Proceedings of the Unified International Technical Conference on Refractories, Dresden, Germany, 18‒21 September 2007. ― P. 226‒229.

17. Di Cecca, C. Thermal and chemical analysis of massive use of hot briquetted iron inside basic oxygen furnace / C. Di Cecca, S. Barella, C. Mapelli [et al.] // Journal of Iron and Steel Research, International. ― 2017. ― Vol. 24. ― P. 901‒907. https://doi.org/10.1016/S1006-706X(17)30132-2.

18. Shapovalov, A. N. Tekhnologiya i raschet plavki stali v kislorodnykh konverterakh [Technology and calculation of steel smelting in oxygen converters] / A. N. Shapovalov. ― Novotroitsk : MISiS, 2011 [Russian].

19. Korneeva, A. Nonparametric modeling of oxygenconverter steelmaking / A. Korneeva, M. Kornet // Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya. ― 2015. ― Vol. 56. ― Р. 24‒28. https://doi.org/10.17073/0368-0797-2013-10-24-28.

20. Korneeva, A. A. About nonparametric dual control algorithm ; In book: Systems Analysis: Modeling and Control abstracts of the International conference in memory of Academician Arkady Kryazhimskiy / A. A. Korneeva, A. V. Medvedev, A. V. Raskina. ― IMM UB RAS Ekaterinburg, 2016. ― Р. 69‒71.

21. Kornet, M. Non-parametric algorithms of identification and control of group of technological processes in low-carbon steel production / M. Kornet, A. Raskina, A. Korneeva [et al.] // Journal of Physics: Conference Series. ― 2020. ― Vol. 1679. ― Article 042042. https://doi.org/10.1088/1742-6596/1679/4/042042.

22. Grigorovich, K. V. Mathematical modeling and optimization of steelmaking technologies / K. V. Grigorovich, O. A. Komolova // ICS 2018 – 7th International Congress on Science and Technology of Steelmaking: The Challenge of Industry 4.0, 2018.

23. Kolesnikov, Yu. Modeling of steelmaking in bof based on physical, chemical and thermal processes / Yu. Kolesnikov, V. Bigeev, D. Sergeev // Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya. ― 2017. ― Vol. 60. ― P. 698‒705. https://doi.org/10.17073/0368-0797-2017-9-698-705.

24. Wen, D. Research on prediction of oxygen consumption in converter steelmaking based on IGWOSVM model / D. Wen, Y. Zhu // Journal of Physics: Conference Series. 2010. ― 2021. ― Article 012138. DOI: 10.1088/1742-6596/2010/1/012138.

25. Cao, L. Physical and mathematical modeling of multiphase flows in a converter / L. Cao, Y. Wang, Q. Liu, X. Feng // ISIJ International. ― 2018. ― Vol 58, № 4. ― Р. 573‒584. https://doi.org/10.2355/isijinternational.ISIJINT-2017-680.

26. Bi, Lu. Optimization research on converter steelmaking process parameters based on DOE / Lu Bi, Li Yu, Qu Bao // Key Engineering Materials. ― 2013. ― Vols. 579/580. ― P. 128‒132. https://doi.org/10.4028/www.scientific.net/KEM.579-580.128.

27. Meshalkin, V. Main directions of engineering theory of energy and resource efficient chemicaltechnological systems in the conditions of digital economy / V. Meshalkin // 2021. ― P. 34‒42. https://doi.org/10.37816/eeste-2021-p-34-42.

28. Filimonova, A. A. Automated system for simulation of electricity consumption in the iron and steel plant / A. A. Filimonova, T. A. Barbasova // 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2017. ― Р. 1‒4. https://doi.org/10.1109/ICIEAM.2017.8076130.

29. Nolde, K. Electric load tracking scheduling of a steel plant / K. Nolde, M. Morari // Computers & Chemical Engineering. ― 2010. ― Vol. 34. ― P. 1899‒1903. https://doi.org/10.1016/j.compchemeng.2010.01.011.

30. Meshalkin, V. State of the art and research development prospects of energy and resource-efficient environmentally safe chemical process systems engineering / V. Meshalkin, V. Dovì, V. Bobkov [et al.] // Mendeleev Communications. ― 2021. ― Vol. 31. ― P. 593‒604. https://doi.org/10.1016/j.mencom.2021.09.003.

31. Dvoretskii, D. S. Integrated design of power- and resource-saving chemical processes and process control systems: Strategy, methods, and application / D. S. Dvoretskii, S. I. Dvoretskii, G. M. Ostrovskii // Theor. Found. Chem. Eng. ― 2008. ― Vol. 42. ― P. 26‒36. https://doi.org/10.1134/S0040579508010041.

32. Meshalkin, V. Methods of digital engineering of resource energy-saving environmentally safe chemical process systems / V. Meshalkin, V. Chelnokov, D. Makarenkov // Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta. ― 2021. ― Vol. 27. ― P. 564‒575. https://doi.org/10.17277/vestnik.2021.04.pp.564-575.

33. The World Steel Association (worldsteel). https://www.worldsteel.org/, (accessed 2022-12-10).

34. Meshalkin, V. P. Assessment of the impact of the chemical pollution due to metallurgical plants on forest areas using satellite images / V. P. Meshalkin, O. B. Butusov, V. G. Dovi [et al.] // Steel Transl. ― 2021. ― Vol. 51. ― P. 783‒787. https://doi.org/10.3103/S0967091221110097.

35. Fan, Z. Low-carbon production of iron and steel: Technology options, economic assessment, and policy / Z. Fan, S. Friedmann // Joule. ― 2021. ― Vol. 5, Iss. 4. ― P. 829‒862. https://doi.org/10.1016/j.joule.2021.02.018.

36. Makarova, A. Analysis of the management system in the field of environmental protection of russian chemical companies / A. Makarova, N. Tarasova, V. Meshalkin [et al.] // International Journal for Quality Research. ― 2018. ― Vol. 12, № 1. ― P. 43‒62. https://doi.org/10.18421/IJQR12.01-03.

37. Holappa, L. A Review of circular economy prospects for stainless steelmaking slags / L. Holappa, M. Kekkonen, A. Jokilaakso, J. Koskinen // Journal of Sustainable Metallurgy. ― 2021. ― Vol. 7. ― P. 806‒817. https://doi.org/10.1007/s40831-021-00392-w.

38. Heikkinen, E. A. Computational study to estimate the possibilities to improve utilisation of stainless steelmaking slags / E. Heikkinen, V. Leinonen, P. Tanskanen, T. Fabritius // In : Proceedings of the 1st International Conference on Energy and Material Efficiency and CO2 Reduction in the Steel Industry, EMECR. Kobe, Japan, 11‒13 November 2017. ― P. 86‒89. https://urn.fi/URN:NBN:fi-fe2019121146758.

39. Salman, M. Construction materials from stainless steel slags: technical aspects, environmental benefits, and economic opportunities / M. Salman, M. Dubois, A. Di Maria [et al.] // Journal of Industrial Ecology. ― 2015. ― Vol. 20, № 4. ― P. 854‒866. https://doi.org/10.1111/jiec.12314.

40. Rosales Garcia, J. Potential of stainless steel slag waste in manufacturing self-compacting concrete / J. Rosales Garcia, F. Agrela, J. Entrenas, M. Cabrera // Materials. ― 2020. ― Vol. 13. ― Article 2049. https://doi.org/10.3390/ma13092049.

41. Sheen, Y.-N. Innovative usages of stainless steel slags in developing self-compacting concrete / Y.-N. Sheen, D.-H. Le, T.-H. Sun // Construction and Building Materials. ― 2015. ― Vol. 101. ― P. 268‒276. https://doi.org/10.1016/j.conbuildmat.2015.10.079.

42. Protopopov, E. Converter steelmaking process: state, dominant trends, forecasts / E. Protopopov, S. Kuznetsov, S. Feiler [et al.] // IOP Conference Series: Materials Science and Engineering. ― 2018. ― Vol. 411. ― Article 012002. https://doi.org/10.1088/1757-899X/411/1/012002.

43. Yaroshenko, A. V. Opyt Novolipetskogo metallurgicheskogo kombinata v razvitii konverternogo proizvodstva [Experience of the Novolipetsk Steel in the development of a converter production] / A. V. Yaroshenko, A. I. Dagman, E. V. Berestyukov, I. A. Nekrasov // Ferrous metallurgy. ― 2013. ― № 4 (1360). ― P. 43‒48.

44. Luk’yanov, A. V. Making BOF steelmaking more efficient based on the experience of the cherepovets metallurgical combine / A. V. Luk’yanov, A. V. Protasov, B. A. Sivak, A. P. Shchegolev // Metallurgist. ― 2016. ― Vol. 60. ― P. 248‒255. https://doi.org/10.1007/s11015-016-0282-y.

45. Jalkanen, H. Chapter 1.4. Converter Steelmaking : in book Treatise on Process Metallurgy Volume 3: Industrial Processes / H. Jalkanen, L. Holappa. ― Elsevier, 2013. ― P. 223‒270. https://doi.org/10.1016/B978-0-08-096988-6.00014-6.

46. Díaz, J. The impact of hot metal temperature on CO2 emissions from basic oxygen converter / J. Díaz, F. J. Fernández // Environ. Sci. Pollut. Res. ― 2020. ― Vol. 27. ― P. 33‒42. https://doi.org/10.1007/s11356-019-06474-3.

47. Demidov, K. Improving lining resistance using highmagnesia fluxes in the converter steelmaking process / K. Demidov, O. Shatilov, A. Lamukhin [et al.] // Refract. Ind. Ceram. ― 2003. ― Vol. 44. ― P. 13‒16. https://doi.org/10.1023/A:1023955309378.

48. Wedrychowicz, M. Analysis of slag activity on corrosion of ceramic materials in a slurry furnace / М. Wedrychowicz, A. W. Bydałek, B. Basiura // Archives of Foundry Engineering. ― 2018. ― Vol. 18. ― P. 95‒100. https://doi.org/10.24425/123609.

49. Sheshukov, O. Effect of refining slag phase composition on ladle furnace unit lining life1 / O. Sheshukov, I. Nekrasov, M. Mikheenkov [et al.] // Refract. Ind. Ceram. ― 2016. ― Vol. 57, № 2. ― Р. 109‒116. https://doi.org/10.1007/s11148-016-9937-2.

50. Kashcheev, I. D. Periclase-carbon refractories molded by a new method 1 / I. D. Kashcheev, K. Zemlyanoi, A. Chevychelov [et al.] // Refract. Ind. Ceram. ― 2017. ― Vol. 58, № 2. ― P. 145‒147. https://doi.org/10.1007/s11148-017-0072-5.

51. Amelin, A. Characteristic features of the gas injection process in oxygen converters that use iron-containing slag produced during steel smelting / A. Amelin, E. Protopopov, S. Kuznetsov [et al.] // Metallurgist. ― 2019. ― Vol. 63. ― P. 549‒552. https://doi.org/10.1007/s11015-019-00857-0.

52. Kozlov, V. Calculated and experimental determination of the phase composition of extra-furnace steel treatment slags / V. Kozlov, A. Shevchik, S. Suvorov [et al.] // Refract. Ind. Ceram. ― 2020. ― Vol. 60, № 5. ― P. 459‒462. https://doi.org/10.1007/s11148-020-00385-4.

53. Sheshukov, O. Y. Stabilization of refining slag by adjusting its phase composition and giving it the properties of mineral binders / O. Yu. Sheshukov, I. V. Nekrasov, M. A. Mikheenkov [et al.] // Refract. Ind. Ceram. ― 2017. ― Vol. 58, № 3. ― P. 324‒330. https://doi.org/10.1007/s11148-017-0104-1.

54. Aksel’rod, L. Method of determining the resistance of furnace refractories to slag and clinker / L. Aksel’rod, I. Maryasev, A. Platonov // Refract. Ind. Ceram. ― 2013. ― Vol. 54, № 2. ― Р. 135‒140. https://doi.org/10.1007/s11148-013-9564-0.

55. Chistyakova, T. B. Methods and technologies of computer training complexes design for personnel in metallurgical production control / T. B. Chistyakova, I. V. Novozhilova // 2018 Third International Conference on Human Factors in Complex Technical Systems and Environments (ERGO)s and Environments (ERGO), St. Petersburg, 2018. ― Р. 132‒136. https://doi.org/10.1109/ERGO.2018.8443867.

56. Galkin, A. Variable structure objects remodelling based on neural networks / A. Galkin, A. Sysoev, P. Saraev // 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), St. Petersburg, 2017. ― Р. 1‒4. https://doi.org/10.1109/ICIEAM.2017.8076430.

57. Chistyakova, T. B. Computer system of industrial data mining for resource-saving control of steel-smelting converter production / T. B. Chistyakova, I. V. Novozhilova, V. V. Kozlov // 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA), Lipetsk, Russia, 2019. ― Р. 523‒526, https://doi.org/10.1109/SUMMA48161.2019.

58. Aksel’rod, L. M. Refractory materials and methods for increasing the life of converter linings from experience of OOO Gruppa Magnezit / L. M. Aksel’rod, A. P. Laptev, A. A. Shlyapin // Refract. Ind. Ceram. ― 2008. ― Vol. 49, № 1. ― Р. 1‒4. https://doi.org/10.1007/s11148-008-9016-4.

59. Visloguzova, E. A. Analysis of the effect of periclasecarbon refractory quality on converter lining life / E. A. Visloguzova, I. D. Kashcheev, K. G. Zemlyanoy // Refract. Ind. Ceram. ― 2013. ― Vol. 54, № 2. ― P. 83‒87. https://doi.org/10.1007/s11148-013-9553-3.


Supplementary files

For citation: Chistyakova T.B., Novozhilova I.V., Kozlov V.V., Shevchik A.P. Resource- and energy-saving control of the steelmaking converter process, taking into account waste recycling. NOVYE OGNEUPORY (NEW REFRACTORIES). 2024;(5):39-55. https://doi.org/10.17073/1683-4518-2024-5-39-55

Views: 69

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)