Open Access Open Access  Restricted Access Subscription Access

Provision of the refractory industry with raw materials and the possibility of using recyclate as a source of raw materials


https://doi.org/10.17073/1683-4518-2024-7-9-20

Full Text:




Abstract

The quality of raw materials has a primary impact on the quality and durability of refractories in metallurgical units. For manufacturers of refractories both in the world and in Russia, natural resources are difficult to access raw materials for objective reasons. Refractories are directly related to the safety of operation of high-temperature units, therefore, the approach to changes and new solutions in the use of raw materials is quite conservative. The desire to use refractory scrap as recyclable materials, and more importantly, as a recyclate replacing completely or partially natural refractory raw materials, requires not only concern for the economics of the process, but also the availability of adequate technology. According to the available estimates, the efficiency of using scrap as a recyclate is four times higher than as recyclable materials. Efforts, including intellectual ones, and the cost of achieving stable quality of the final product are especially important when using a recyclate. The involvement of secondary resources in the production, including refractory scrap, is becoming increasingly relevant against the background of the influence of dynamic technological processes in metallurgy, energy, construction materials production and other industries. Solving problems of nature conservation, issues related to the carbon footprint and the economy of natural resources is becoming the most important area of engineering research.

About the Authors

L. M. Aksel’rod
ПАО НЛМК
Russian Federation


E. V. Panov
ООО «ТД «ОгнеупорПромСервис»
Russian Federation


References

1. Siebring, R. Bridging the gap between refractory supplier and the refractory user in the steel plant → real value-in-use / R. Siebring, S. Sinnema, W. Tesselaar // Refractories Worldforum. ― 2017. ― Vol. 11 (3). ― P. 71‒77.

2. O’Driskol, M. Squaring the circle: challenges and opportunities in recycling refractory minerals / M. O’Driskol // Refractories Worldforum. ― 2024. ― Vol. 16 (1). ― P. 23‒26.

3. Аксельрод, Л. М. Перспектива обеспечения металлургии огнеупорами в 2022 г. и ключевые факторы развития на ближайшее будущее. Часть 2. Доступность сырья, развитие новых направлений / Л. М. Аксельрод // Новые огнеупоры. ― 2022. ― № 8. ― C. 66‒75.

4. Capacity replacement method on magnesia industry released by Liaoning government // Refractories Window. ― 2024. ― № 194. ― P. 12.

5. Шакуров, А. Г. Комплексная переработка жидких сталеплавильных шлаков с восстановлением железа и получением качественной товарной продукции / А. Г. Шакуров, В. В. Журавлев, В. М. Паршин [и др.] // Сталь. ― 2014. ― № 2. ― C. 75‒81.

6. Техногенное минеральное сырье Урала ; под ред. В. А. Коротеева и В. А. Перепелицына. ― Екатеринбург : РИО УрО РАН, 2013. ― 332 с.

7. Кащеев, И. Д. Химическая технология огнеупоров / И. Д. Кащеев, К. К. Стрелов, П. С. Мамыкин. ― М. : Интермет инжиниринг, 2007. ― 752 с.

8. Aksel’rod, L. M. Satkinsk deposit magnesite enrichment by an X-Ray transmission method / L. M. Aksel’rod, M. Yu. Turchin, M. I. Nazmiev [et al.] // Refract. Ind. Ceram. ― 2016. ― Vol. 57, № 3. ― Р. 229‒233. https://doi.org/10.1007/s11148-016-9958-x.

9. Хорошавин, Л. Б. Повысить внимание к вторичным огнеупорам / Л. Б. Хорошавин // Новые огнеупоры. ― 2006. ― № 7. ― C. 34‒38.

10. Hantenstein, J. Enhanced recycling of refractories by automated sorting / J. Hantenstein, A. Ducastel, E. Gueguen [et al.] // 59th International Colloquium on Refractories, 28‒29 september 2016, Aachen, Germany. ― P. 34‒37.

11. Horckmans, L. Recycling of refractory bricks used in basic steelmaking : a review / L. Horckmans, P. Nielsen, P. Dierckx, A. Ducastel // Resources, Conservation & Recycling. ― 2019. ― Vol. 140. ― P. 297‒304.

12. Munoz, I. Life cycle assessment of refractory waste manadgment in a Spanish steelworks / I. Munoz, A. Soto, D. Maza, F. Bugon // Waste Management. ― 2020. ― Vol. 111. ― P. 1‒9. https://doi.org/10.1016/j.wasman.2020.05.023.

13. Lule, R. G. Recycling MgO‒C refractory in the EAF of IMEXSA / R. G. Lule, A. N. Conejo, F. Lopéz, R. Rodriguez // AISTech 2005, Proceedings. ― Vol. I. ― P. 605‒615.

14. De Lima, D. F. Recycling MgO‒C scrap from BOF with high Al content / D. F. de Lima, A. de Oliveira Figuereido Junior, N. C. Coelho, M. G. Lutkenhaus // Unitecr 2011. Proc. 12th Biennial Worldwide Conference on Refractories, Oct. 30‒Nov. 2, 2011, Kyoto, Japan. ― P. 256‒259.

15. Held, S. Innovative aluminium carbide detection and treatment technologies to increase magnesia-carbon recycling / S. Held, A. Leitner, S. Honigshofer [et al.] // Bulletin (The Journal of Refractory Innovation). ― 2022. ― P. 11‒16.

16. Moraes, M. Technical challenges for refractory recycling and innovative processing solutions / M. Moraes, A. Leitner, G. Nogueira [et al.] // Bulletin (The Journal of Refractory Innovation). ― 2023. ― P. 33‒38.

17. Neese, J. Application and advanteges of reused MgO‒C in ladle / J. Neese, Th. Schemmel, H. le Jansen // Refractories WORDFORUM. ― 2023. ― Vol. 15, № 2. ― P. 41‒44.

18. Moritz, K. Magnesia-carbon refractories from recycled materials / K. Moritz, S. Dudczig, H. Endres [et al.] // Ceramic Engineering and Science. ― 2022. ― Vol. 4, iss. 1. ― P. 53‒58. https://doi.org/10.1002/ces2.10115.

19. Maciej, L. Recycled magnesia-carbon aggregate as the component of new type of MgO‒C refractories / L. Maciej, E. Sniezek, I. Jastrzebska[et al.] // Construction and Building Materials. ― 2021. ― Vol. 272. ― Article 121912. https://doi.org/10.1016/j.conbuildmat.2020.121912.

20. Stadtmüller, Till M. J. MgO‒C refractories based on refractory recyclates and environmentally friendly binders / Till M. J. Stadtmüller, E. Storti, N. Brachhold [et al.] // Open ceramics. ― 2023. ― Vol. 16. ― Article 100469. https://doi.org/10.1016/j.oceram.2023.100469.

21. https://www.Japanmetalldeily.com/articles/-/136094 (дата обращения 14.03.2024).

22. Bulletin (The Journal of Refractory Innovation). ― 2022. ― P. 3.

23. http://informed.com/magnesia-refractory-mineralmaelstrom-the-heat-is-on-seen-heard-at-icr-Aachen/ (дата обращения 21.08.2021).

24. Moritz, К. Recyclate-containing magnesia-carbon refractories ― influence on the non-metallic inclusions in steel / K. Moritz, F. Kerber, S. Dudczig [et al.] // Open Ceramics. ― 2023. ― Vol. 16. ― Article 100450. https://doi.org/10.1016/j.oceram.2023.100450.

25. Примаченко, В. В. Использование лома огнеупорных изделий и нормального корунда в производстве набивных масс, сухих смесей, огнеупорных бетонов и мертелей : тез. докл. Междунар. конф. огнеупорщиков и металлургов (2007 г., Москва) / В. В. Примаченко, В. В. Мартыненко, Л. А. Бабкина [и др.] // Новые огнеупоры. ― 2007. ― № 3. ― С. 42.

26. Sawada, H. Development of alumina-magnesia castable using spent magnesia-carbon bricks and spent alumina-magnesia castable / H. Sawada, K. Nakanushi, K. Koboyashy [et al.] // Unitecr 2015 ― 14th Biennal Worldwide Congress. Processing 265.

27. Seong, Y. Recycling of Al2O3‒SiC‒C refractory brick for repairing torpedo ladle car / Y. Seong, S. Kim, S. Jang [et al.] // Unitecr 2023 (27‒29th September, 2023, Frankfurt, Germany). ―- P. 270‒273.

28. Fu, L. Fabrication of CaO‒MgO‒Al2O3 materials from metallurgical waste industrial residue and their potential usage in MgO‒C refractories / L. Fu, H. Gu, A. Huang [et al.] // Ceram. Int. ― 2020. ― Vol. 46, № 1. ― P. 959‒967.

29. Vert, T. New ways to destroy refractories ― the future of green steelmaking / T. Vert // Unitecr 2023 (27‒29th september, 2023, Frankfurt, Germany). ― P. 307‒310.


Supplementary files

For citation: Aksel’rod L.M., Panov E.V. Provision of the refractory industry with raw materials and the possibility of using recyclate as a source of raw materials. NOVYE OGNEUPORY (NEW REFRACTORIES). 2024;(7):9-20. https://doi.org/10.17073/1683-4518-2024-7-9-20

Views: 84

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)