

Thermoelectric performance of Zn1 ‒ xMgxO ceramics synthesized via conventional sintering in Ar atmosphere
https://doi.org/10.17073/1683-4518-2024-1-59-64
Abstract
About the Authors
Samy MostafaEgypt
Ahmed A. M. El-Amir
Egypt
Fouad Zahran
Egypt
Adel Ahmed
Egypt
Mohamed Elwan
Egypt
Amal Khalifa
Egypt
Emad Ewais
Egypt
References
1. CRC handbook of thermoelectrics ; ed. by D. M. Rowe. ― CRC press, 2018.
2. Mohammed, M. A. A review of thermoelectric ZnO nanostructured ceramics for energy recovery / M. A. Mohammed, I. Sudin, A. M. Noor [et al.] // International Journal of Engineering & Technology. ― 2018. ― Vol. 7, № 2.29. ― Р. 27‒30. https://www.sciencepubco.com/index.php/ijet/article/view/13120.
3. Duan, B. Regulation of oxygen vacancy and reduction of lattice thermal conductivity in ZnO ceramic by high temperature and high pressure method / B. Duan, Y. Li, J. Li [et al.] // Ceram. Int. ― 2020. ― Vol. 46, № 16. ― Р. 26176‒26181.
4. Zeng, C. Enhanced thermoelectric performance of SmBaCuFeO5+δ/Ag composite ceramics / С. Zeng, S. Butt, Y. H. Lin [et al.] // J. Am. Ceram. Soc. ― 2016. ― Vol. 99, № 4. ― Р. 1266‒1270.
5. Combe, E. Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process / E. Combe, E. Guilmeau, E. Savary [et al.] // J. Eur. Ceram. Soc. ― 2015. ― Vol. 35, № 1. ― Р. 145‒151.
6. Li, W. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects / W. Li, L. Zheng, B. Ge [et al.] // Adv. Mater. ― 2017. ― Vol. 29, № 17. ― Article 1605887.
7. Pashkevich, A. V. Structure, electric and thermoelectric properties of binary ZnO-based ceramics doped with Fe and Co / A. V. Pashkevich, A. K. Fedotov, E. N. Poddenezhny [et al.] // J. Alloys Compd. ― 2022. ― Vol. 895. ― Article 162621.
8. Tsubota, T. Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion / T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai // J. Mater. Chem. ― 1997. ― Vol. 7, № 1. ― Р. 85‒90.
9. Abdel-Motaleb, I. M. Thermoelectric devices : principles and future trends / I. M. Abdel-Motaleb, S. M. Qadri // arXiv preprint arXiv. ― 2017. ― 1704. 07742. https://doi.org/10.48550/arXiv.1704.07742.
10. Radingoana, P. M. (2019). Université Paul SabatierToulouse III).
11. Lei, L. W. Synthesis and low field transport properties in a ZnO-doped La0.67Ca0.33MnO3 composite / L. W. Lei, Z. Y. Fu, J. Y. Zhang, H. Wang // Mater. Sci. Eng., B. ― 2006. ― Vol. 128, № 1‒3. ― Р. 70‒74.
12. Janotti, A. Fundamentals of zinc oxide as a semiconductor / A. Janotti, C. G. Van de Walle // Rep. Prog. Phys. ― 2009. ― Vol. 72, № 12. ― Article 126501.
13. Janotti, A. Native point defects in ZnO / A. Janotti, C. G. Van de Walle // Phys. Rev., B. ― 2007. ― Vol. 76, № 16. ― Article 165202.
14. Olorunyolemi, T. Thermal conductivity of zinc oxide: from green to sintered state / T. Olorunyolemi, A. Birnboim, Y. Carmel [et al.] // J. Am. Ceram. Soc. ― 2002. ― Vol. 85, № 5. ― Р. 1249‒1253.
15. Liang, X. Thermoelectric transport properties of naturally nanostructured Ga‒ZnO ceramics : effect of point defect and interfaces / X. Liang // J. Eur. Ceram. Soc. ― 2016. ― Vol. 36, № 7. ― Р. 1643‒1650. https://www.sciencedirect.com/science/article/pii/S095522191630067X.
16. Lu, L. The resistivity of zinc oxide under different annealing configurations and its impact on the leakage characteristics of zinc oxide thin-tilm / L. Lu, M. Wong // IEEE Transactions on Electron Devices. ― 2014. ― Vol. 61, № 4. ― Р. 1077‒1084.
17. Wagner, C. D. GE Muilenberg in Handbook of Х-ray photoelectron spectroscopy : a reference book of standard data for use in Х-ray photoelectron spectroscopy / C. D. Wagner. ― Physical Electronics Division, PerkinElmer Corp., Eden Prairie, USA, 1979.
18. Chen, M. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films / М. Chen, Х. Wang, Y. H. Yu [et al.] // Appl. Surf. Sci. ― 2000. ― Vol. 158, № 1/2. ― P. 134‒140.
19. Lin, C. C. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates / C. C. Lin, H. P. Chen, H. C. Liao, S. Y. Chen // Appl. Phys. Lett. ― 2005. ― Vol. 86, № 18. ― Article 183103.
20. Lu, Y. F. The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition / Y. F. Lu, H. Q. Ni, Z. H. Mai, Z. M. Ren // J. Appl. Phys. ― 2000. ― Vol. 88, № 1. ― Р. 498‒502.
21. Valtiner, M. Preparation and characterisation of hydroxide stabilised ZnO (0001)–Zn–OH surfaces / M. Valtiner, S. Borodin, G. Grundmeier // Physical Chemistry Chemical Physics. ― 2007. ― Vol. 9, № 19. ― P. 2406‒2412.
22. Ullah, M. Effects of Al and B co-doping on the thermoelectric properties of ZnO ceramics sintered in an argon atmosphere / M. Ullah, S. Ullah, A. Manan [et al.] // Appl. Phys., A. ― 2022. ― Vol. 128, № 2. ― Р. 1‒7.
23. Tsubota, T. Transport properties and thermoelectric performance of (Zn1–yMgy)1–xAlxO / T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai // J. Mater. Chem. ― 1998. ― Vol. 8 (2). ― P. 409‒412.
Supplementary files
For citation: Mostafa S., El-Amir A., Zahran F., Ahmed A., Elwan M., Khalifa A., Ewais E. Thermoelectric performance of Zn1 ‒ xMgxO ceramics synthesized via conventional sintering in Ar atmosphere. NOVYE OGNEUPORY (NEW REFRACTORIES). 2024;(1):59-64. https://doi.org/10.17073/1683-4518-2024-1-59-64
Refbacks
- There are currently no refbacks.