Open Access Open Access  Restricted Access Subscription Access

Anti-friction self-lubricating ceramic coatings produced by plasma electrolytic oxidation


https://doi.org/10.17073/1683-4518-2024-3-51-55

Full Text:




Abstract

A technology has been developed for creating anti-friction composite self-lubricating coatings formed on aluminum alloys using the plasma electrolytic oxidation method. It has been established that the introduction of solid lubricant components into the surface layer of ceramic coatings formed by plasma electrolytic oxidation on the AO3-7 alloy in silicate-alkaline electrolytes can significantly minimize the coefficient of friction of the coating-steel pair. Ill. 6. Ref. 27.

About the Authors

A. D. Bykova
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»
Russian Federation


M. A. Markov
НИЦ «Курчатовский институт» ― ЦНИИ КМ «Прометей»
Russian Federation


References

1. Bhushan, B. Modern tribology нandbook / B. Bhushan. ― Columbus : CRC Press, 2000. ― 1760 p.

2. Hoornaert, T. Hard wear-resistant coatings : a review / T. Hoornaert, Z. K. Hua, J. H. Zhang // Adv. Tribology. ― 2009. ― P. 774―779. DOI:10.1007/978-3-642-03653-8_257.

3. Holmberg, K. Coatings tribology: properties, mechanisms, techniques and applications in surface engineering. ― 2nd edition / K. Holmberg, A. Matthews. ― Elsevier Science : Tribology and Interface Engineering Series. Vol. 56, 2009. ― 576 p.

4. Khadem, M. Tribology of multilayer coatings for wear reduction : а review / M. Khadem, O. V. Penkov, H.-K. Yang, D.-E. Kim // Friction. ― 2017. ― Vol. 5, № 3. ― P. 248–262. DOI:10.1007/s40544-017-0181-7.

5. Суминов, И. В. Микродуговое оксидирование (обзор) / И. В. Суминов, А. В. Эпельфельд, В. Б. Людин [и др.] // Приборы. ― 2001. ― Т. 9. ― С. 13–23.

6. Bykova, A. D. Study of the formation of functional ceramic coatings on metals / A. D. Bykova, M. A. Markov, A. V. Krasikov [et al.] // Journal of Physics: Conference Series. ― 2019. — Vol. 1400. ― Article 055008. DOI: 10.1088/1742-6596/1400/5/055008.

7. Chernyshov, N. S. Corrosion tests of oxide-ceramic coatings formed by microarc oxidation / N. S. Chernyshov, Y. A. Kuznetsov, M. A. Markov [et al.] // Refract. Ind. Ceram. ― 2020. ― Vol. 61, № 2. ― P. 220–223. DOI: 10.1007/s11148-020-00460-w.

8. Markov, M. A. Corrosion-resistant ceramic coatings that are promising for use in liquid metal environments / M. A. Markov, A. D. Kashtanov, A. V. Krasikov [et al.] // Key Eng. Mater. ― 2019. ― Vol. 822. ― P. 752‒759. DOI: 10.4028/www.scientific.net/KEM.822.752.

9. Li, Q. Plasma electrolytic oxidation coatings on lightweight metals / Q. Li, J. Liang, Q. Wang // Modern Surface Engineering Treatments. ― 2013. ― P. 75–99. DOI: 10.5772/55688.

10. Simchen, F. Introduction to plasma electrolytic oxidation ― an overview of the process and applications / F. Simchen, M. Sieber, A. Kopp, T. Lampke // Coatings. ― 2020. ― Vol. 10, № 7. ― P. 628. DOI: 10.3390/coatings10070628.

11. Yerokhin, A. L. Plasma electrolysis for surface engineering / A. L. Yerokhin, X. Nie, A. Leyland [et al.] // Surf. Coat. Technol. ― 1999. ― Vol. 122. — P. 73–93.

12. Суминов, И. В. Плазменно-электролитическое модифицирование поверхности металлов и сплавов. Т. 2 / И. В. Суминов, П. Н. Белкин, А. В. Эпельфельд [и др.] — М. : Техносфера, 2011. — 512 с.

13. Kuznetsov, Y. A. The use of cold spraying and microarc oxidation techniques for the repairing and wear resistance improvement of motor electric bearing shields / Y. A. Kuznetsov, I. N. Kravchenko, D. А. Gerashchenkov [et al.] // Energies. ― 2022. ― Vol. 15, issue 3. ― Article 912. DOI: 10.3390/en15030912

14. Markov, M. A. Investigation of the characteristics of ceramic coatings obtained by microarc oxidation on direct and alternating currents in an alkaline silicate electrolyte / M. A. Markov, Y. A. Kuznetsov, A. V. Krasikov [et al.] // Journal of Machinery Manufacture and Reliability. ― 2020. ― Vol. 49, № 8. ― P. 672–679. DOI: 10.3103/S1052618820080063.

15. Markov, M. A. Technological features of the porous functional ceramic coatings formation on aluminium by the method of microarc oxidation in silicate electrolytes / M. A. Markov, A. V. Krasikov, A. D. Bykova [et al.] // Welding International. ― 2019. ― Vol. 33, № 7‒9. ― P. 351‒356. DOI: 10.1080/09507116.2021.1884457.

16. Крагельский, И. В. Коэффициенты трения / И. В. Крагельский, И. Э. Виноградова. ― М. : Машгиз. 1962. — 120 с.

17. Markov, M. A. Formation of protective ceramicmetal coatings on steel surfaces by microarc oxidation with electro-chemical deposition of nickel / M. A. Markov, A. V. Krasikov, D. A. Gerashchenkov [et al.] // Refract. Ind. Ceram. ― 2018. ― Vol. 58, № 6. ― P. 634‒639. DOI: 10.1007/s11148-018-0159-7.

18. Атрощенко, Э. С. Область применения и свойства покрытий, получаемых микродуговым оксидированием / Э. С. Атрощенко, И. А. Казанцев, А. Е. Розен, Н. В. Голованова // Физика и химия обработки материалов. ― 1996. ― Т. 3. ― С. 8–11.

19. Rudnev, V. S. Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties / V. S. Rudnev, I. V. Lukiyanchuk, M. S. Vasilyeva [et al.] // Surf. Coat. Technol. ― 2016. ― Vol. 307. ― P. 1219‒1235. DOI: 10.1016/j.surfcoat.2016.07.060.

20. Markov, M. A. Formation of porous ceramic supports for catalysts by microarc oxidation / M. A. Markov, A. V. Krasikov, I. V. Ulin [et al.] // Russ. J. Appl. Chem. ― 2017. ― Vol. 90, № 9. ― P. 1417‒1424. DOI: 10.1134/S1070427217090075.

21. Markov, M. A. Porous functional coatings by microarc oxidation / M. A. Markov, D. A. Gerashchenkov, A. V. Krasikov [et al.] // Glass and Ceramics. ― 2018. ― Vol. 75, № 7/8. ― P. 258‒263. DOI: 10.1007/s10717-018-0067-9.

22. Rudnev, V. S. Plasma-electrolytic formation, composition and catalytic activity of manganese oxide containing structures on titanium / V. S. Rudnev, M. S. Vasilyeva, N. B. Kondrikov, L. M. Tyrina // Appl. Surf. Sci. ― 2005. ― Vol. 252, № 5. ― P. 1211‒1220. DOI: 10.1016/j. apsusc.2004.12.054.

23. Yu, X. W. In-situ fabrication of catalytic metal oxide films in microchannel by plasma electrolytic oxidation / X. W. Yu, L. Chen, Y. Y. He, Z. C. Yan // Surf. Coat. Technol. ― 2015. ― Vol. 269. ― P. 30‒35. DOI: 10.1016/j.surfcoat.2014.12.037.

24. Bayati, M. R. MAO-synthesized Al2O3-supported V2O5 nano-porous catalysts : growth, characterization, and photoactivity / M. R. Bayati, H. R. Zargar, R. Molaei [et al.] // Appl. Surf. Sci. ― 2010. ― Vol. 256, № 12. ― P. 3806‒3811. DOI: 10.1016/j.apsusc.2010.01.030.

25. John, M. Self-lubricating materials for extreme condition applications / M. John, P. L. Menezes // Materials. ― 2021. ― Vol. 14. ― Article 5588. DOI: 10.3390/ma14195588.

26. Menezes, P. L. Self-lubricating composites / P. L. Menezes, P. K. Rohatgi, E. Omrani (eds.). ― Berlin : Springer, 2018. DOI: 10.1007/978-3-662-64243-6.

27. Furlan, K. P. Self-lubricating composites containing MoS2 : a review / K. P. Furlan, J. D. B. de Mello, A. N. Klein // Tribology International. ― 2018. ― Vol. 120. ― P. 280‒298. DOI: 10.1016/j.triboint.2017.12.033


Supplementary files

For citation: Bykova A.D., Markov M.A. Anti-friction self-lubricating ceramic coatings produced by plasma electrolytic oxidation. NOVYE OGNEUPORY (NEW REFRACTORIES). 2024;(3):51-55. https://doi.org/10.17073/1683-4518-2024-3-51-55

Views: 75

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)