

Самораспространяющийся высокотемпературный синтез композиционного материала на основе t-ZrO2‒SiO2‒TiB2.
https://doi.org/10.17073/1683-4518-2024-2-30-36
Аннотация
Методом самораспространяющегося высокотемпературного синтеза получены керамические компо- зиционные материалы, состоящие из матрицы на основе стабилизированного ZrO2 с распределенны- ми в ней частицами TiB2 и SiO2. В качестве стабилизирующей добавки использовали Y2O3 в количестве до 10 мас. %. Изучено влияние содержания Y2O3 на температуру горения, фазовый состав и структуру полученных материалов. Показано, что введение до 5,6 мас. %. Y2O3 повышает температуру горения исследуемых материалов, а также приводит к снижению количества моноклинной модификации ZrO2 в продуктах синтеза.
Об авторах
А. П. ЧижиковРоссия
K. т. н.
г. Черноголовка Московской обл.
А. С. Жидович
Россия
K. т. н.
г. Черноголовка Московской обл.
М. С. Антипов
Россия
г. Черноголовка Московской обл.
П. М. Бажин
Россия
Д. т. н.
г. Черноголовка Московской обл.
Н. Ю. Хоменко
Россия
г. Черноголовка Московской обл.
Список литературы
1. Kozerozhets, I. V. Acquisition, properties, and application of nanosized magnesium oxide powders: an overview / I. V. Kozerozhets, G. P. Panasyuk, L. A. Azarova [et al.] // Theor. Found. Chem. Eng. ― 2021. ― Vol. 55. ― P. 1126‒1132. https://doi.org/10.1134/S004057952106004X.
2. Panasyuk, G. P. Method for synthesis of fine crystalline magnesium aluminate spinel / G. P. Panasyuk, I. V. Kozerozhets, M. N. Danchevskaya [et al.] // Dokl. Chem. ― 2019. ― Vol. 487. ― P. 218‒220. https://doi.org/10.1134/S0012500819080019.
3. Malinina, E. A. A new approach to the synthesis of nanocrystalline cobalt boride in the course of the thermal decomposition of cobalt complexes [Co(DMF)6]2+ with boron cluster anions / E. A. Malinina, I. I. Myshletsov, G. A. Buzanov [et al.] // Molecules. ― 2023. ― Vol. 28. ― Article 453. https://doi.org/10.3390/molecules28010453.
4. Malinina, E. A. Synthesis and thermal reduction of complexes [NiLn][B10H10] (L = DMF, H2O, n = 6; L = N2H4, n = 3): Formation of Solid Solutions Ni3C1 – xВx / E. A. Malinina, L. V. Goeva, G. A. Buzanov [et al.] // Russ. J. Inorg. Chem. ― 2020. ― Vol. 65. ― P. 126‒132. https://doi.org/10.1134/S0036023620010118.
5. Jiang, Q. Strengthening mechanism of Al2O3‒ZrO2‒C sliding plate material by existence modes of in situ generated β-SiC whiskers / Q. Jiang, Y. Peng, B. Han [et al.] // Ceram. Int. ― 2023. ― Vol. 49. ― P. 39815‒39824. https://doi.org/10.1016/j.ceramint.2023.09.005.
6. Tang, B. Failure analysis of Al2O3‒C‒SiO2 slide gate plates during continuous casting based on numerical simulation / B. Tang, Z. Lu, F. Li [et al.] // J. Mater. Res. Technol. ― 2023. ― Vol. 24. ― P. 6107‒6117. https://doi.org/10.1016/j.jmrt.2023.04.174.
7. Liu, X. Preparation and application of unfired Al2O3‒ Al‒C slide plate materials in the presence of trace Zn / X. Liu, Z. Luo, J. Gao [et al.] // Ceram. Int. ― 2021. ― Vol. 47. ― P. 1578‒1587. https://doi.org/10.1016/j.ceramint.2020.08.271.
8. Labadie, M. Interaction between calcium and Al2O3‒ ZrO2‒C slide gate plates / M. Labadie, M. Lujan Dignami, S. Camelli // J. Mater. Res. Technol. ― 2012. ― Vol. 1. ― P. 103‒108. https://doi.org/10.1016/S2238-7854(12)70019-4.
9. Bahamirian, M. High-temperature cyclic oxidation of micro- and nano-ZrO2‒25 wt. % CeO2‒2.5 wt. % Y2O3 thermal barrier coatings at 1300 °C / M. Bahamirian, A. Keyvani, R. Irankhah [et al.] // Surf. Coat. Technol. ― 2023. ― Vol. 474. ― Article 130076. https://doi.org/10.1016/j.surfcoat.2023.130076.
10. Franco, D. Wear behavior at high temperatures of ZrO2‒Al2O3 plasma sprayed coatings and an electromelted AZS refractory / D. Franco, H. Ageorges, E. Lopez [et al.] // Surf. Coat. Technol. ― 2021. ― Vol. 425. ― Article 127715. https://doi.org/10.1016/j.surfcoat.2021.127715.
11. Wang, W. Thermodynamic corrosion behavior of Al2O3, ZrO2 and MgO refractories in contact with high basicity refining slag / W. Wang, L. Xue, T. Zhang [et al.] // Ceram. Int. ― 2019. ― Vol. 45. ― P. 20664‒20673. https://doi.org/10.1016/j.ceramint.2019.07.049.
12. Liu, L. Continuous supercritical hydrothermal synthesis of stabilized ZrO2 nanocomposites: Doping mechanism of typical metals and transition elements / L. Liu, S. Wang, G. Jiang [et al.] // Mater. Today Chem. ― 2024. ― Vol. 35. ― Article 101902. https://doi.org/10.1016/j.mtchem.2024.101902.
13. Zhao, Y. Effects of calcination temperature on grain growth and phase transformation of nano-zirconia with different crystal forms prepared by hydrothermal method / Y. Zhao, L. Xu, M. Guo [et al.] // J. Mater. Res. Technol. ― 2022. ― Vol. 19. ― P. 4003‒4017. https://doi.org/10.1016/j.jmrt.2022.06.137.
14. Matsui, K. Review: microstructure-development mechanism during sintering in polycrystalline zirconia / K. Matsui, H. Yoshida, Y. Ikuhara // Int. Mater. Rev. ― 2018. ― Vol. 63. ― P. 375‒406. https://doi.org/10.1080/09506608.2017.1402424.
15. Fujii, S. Empirical interatomic potentials for ZrO2 and YSZ polymorphs: Application to a tetragonal ZrO2 grain boundary / S. Fujii, K. Shimazaki, A. Kuwabara // Acta Mater. ― 2024. ― Vol. 262. ― Article 119460. https://doi.org/10.1016/j.actamat.2023.119460.
16. Keerthana, L. MgO‒ZrO2 mixed nanocomposites: fabrication methods and applications / L. Keerthana, C. Sakthivel, I. Prabha // Mater. Today Sustain. ― 2019. ― Vol. 3/4. ― Article 100007. https://doi.org/10.1016/j.mtsust.2019.100007.
17. Liu, S. In situ self-assembly preparation and characterization of CaO–ZrO2 nanopowders under vacuum / S. Liu // Vacuum. ― 2023. ― Vol. 213. ― Article 112089. https://doi.org/10.1016/j.vacuum.2023.112089.
18. Song, X. Thermophysical and mechanical properties of cubic, tetragonal and monoclinic ZrO2 / X. Song, Y. Ding, J. Zhang [et al.] / J. Mater. Res. Technol. ― 2023. ― Vol. 23. ― P. 648‒655. https://doi.org/10.1016/j.jmrt.2023.01.040.
19. Zhang, W. Preparation and properties of a porous ZrO2/SiZrBOC ceramic matrix composite with high temperature resistance and low thermal conductivity / W. Zhang, F. Shi, J. Wang [et al.] // J. Eur. Ceram. Soc. ― 2024. ― Vol. 44. ― P. 2329‒2337. https://doi.org/10.1016/j.jeurceramsoc.2023.11.007.
20. Lee, B. T. Microstructure and material properties of double-network type fibrous (Al2O3–m-ZrO2)/t-ZrO2 composites / B. T. Lee, S. K. Sarkar, H. Y. Song // J. Eur. Ceram. Soc. ― 2008. ― Vol. 28. ― P. 229‒233. https://doi.org/10.1016/j.jeurceramsoc.2007.05.010.
21. Hao, Z. Hydrothermal synthesized F doped ZrO2 powders with novel photocatalytic activities / Z. Hao, G. Ling, Z. Shengnan [et al.] // Inorg. Chem. Commun. ― 2024. ― Article 112170. https://doi.org/10.1016/j.inoche.2024.112170.
22. Kozerozhets, I. V. New approach to prepare the highly pure ceramic precursor for the sapphire synthesis / I. V. Kozerozhets, G. P. Panasyuk, E. A. Semenov [et al.] // Ceram. Int. ― 2020. ― Vol. 46. ― P. 28961‒28968. https://doi.org/10.1016/j.ceramint.2020.08.067.
23. Husain, M. S. Structural and optical analyses of hydrothermally synthesized ZrO2 nanopowder / M. S. Husain, V. Pandey, H. Ahmed [et al.] // Mater. Today: Proc. ― 2023. https://doi.org/10.1016/j.matpr.2023.06.079.
24. Ban, J. Preparation and application of ZrB2‒ SiCw composite powder for corrosion resistance improvement in Al2O3‒ZrO2‒C slide plate materials / J. Ban, C. Zhou, L. Feng [et al.] // Ceram. Int. ― 2020. ― Vol. 46. ― P. 9817‒9825. https://doi.org/10.1016/j.ceramint.2019.12.255.
25. Baqiah, H. Nanostructure, optical, electronic, photoluminescence and magnetic properties of Co-doped ZrO2 sol-gel films / H. Baqiah, M. M. A. Kechik, J. Pasupuleti [et al.] // Results Phys. ― 2023. ― Vol. 55. ― Article 107194. https://doi.org/10.1016/j.rinp.2023.107194.
26. Lusiola, T. Electrospinning of ZrO2 fibers without sol-gel methods: Effect of inorganic Zr-source on electrospinning properties and phase composition / T. Lusiola, A. Ichangi, D. Weil [et al.] // Open Ceram. ― 2023. ― Vol. 12. ― Article 100324. https://doi.org/10.1016/j.oceram.2022.100324.
27. Khalili, S. Successful electrospinning fabrication of ZrO2 nanofibers: A detailed physical-chemical characterization study / S. Khalili, H. M. Chenari // J. Alloys Compd. ― 2020. ― Vol. 828. ― Article 154414. https://doi.org/10.1016/j.jallcom.2020.154414.
28. Shcherbakov, V. A. Вarothermic treatment of TixZr1‒xC mixed carbides produced by MA-SHS consolidation / V. A. Shcherbakov, I. E. Semenchuk, A. N. Gryadunov [et al.] // Materialia. ― 2023. ― Vol. 32. ― 101924. https://doi.org/10.1016/j.mtla.2023.101924.
29. Miloserdov, P. A. Metallothermic SHS of Al2O3‒Cr2O3 + TiC ceramic composite material / P. A. Miloserdov, V. A. Gorshkov, D. E. Andreev [et al.] // Ceram. Int. ― 2023. ― Vol. 49. ― P. 24071‒24076. https://doi.org/10.1016/j.ceramint.2023.04.145.
30. Bazhin, P. Titanium-titanium boride matrix composites prepared in situ under conditions combining combustion processes and high-temperature shear deformation / P. Bazhin, A. Chizhikov, A. Bazhina [et al.] // Mater. Sci. Eng. A. ― 2023. ― Vol. 874. ― Article 145093. https://doi.org/10.1016/j.msea.2023.145093.
31. Bazhina, A. Structure, phase composition and mechanical characteristics of layered composite materials based on TiB/xTi‒Al/α-Ti (x = 1, 1,5, 3) obtained by combustion and high-temperature shear deformation / A. Bazhina, A. Chizhikov, A. Konstantinov [et al.] // Mater. Sci. Eng. A. ― 2022. ― Vol. 858. ― Article 144161. https://doi.org/10.1016/j.msea.2022.144161.
32. Lapshin, O. V. Role of mixing and milling in mechanochemical synthesis (review) / O. V. Lapshin, E. V. Boldyreva, V. V. Boldyrev // Russ. J. Inorg. Chem. ― 2021. ― Vol. 66. ― P. 433‒453. https://doi.org/10.1134/S0036023621030116.
33. Tomilin, O. B. Preparation of luminophore CаTiO3:Pr3+ by self-propagating high-temperature synthesis / O. B. Tomilin, E. E. Muryumin, M. V. Fadin, S. Yu. Shchipakin // Russ. J. Inorg. Chem. ― 2022. ― Vol. 67. ― P. 431‒438. https://doi.org/10.1134/S0036023622040192.
34. Bazhin, P. Synthesis and structure peculiarities of composite material based on Al2O3‒ZrO2 hardened with W and WB particles / P. Bazhin, E. Kostitsyna, A. Chizhikov [et al.] // J. Alloys Compd. ― 2021. ― Vol. 856. ― Article 157576. https://doi.org/10.1016/j.jallcom.2020.157576.
35. Stolin, A. Synthesis and characterization of Al2O3‒ ZrO2-based eutectic ceramic powder material dispersionhardened with ZrB2 and WB particles prepared by SHS / A. Stolin, P. Bazhin, A. Konstantinov // Ceram. Int. ― 2018. ― Vol. 44. ― P. 13815‒13819. https://doi.org/10.1016/j.ceramint.2018.04.225.
36. Chizhikov, A. P. Self-propagating high-temperature synthesis of ceramic material based on aluminummagnesium spinel and titanium diboride / A. P. Chizhikov, A. S. Konstantinov, P. M. Bazhin // Russ. J. Inorg. Chem. ― 2021. ― Vol. 66. ― P. 1115‒1120. https://doi.org/10.1134/S0036023621080039.
37. Bazhin, P. Ceramic Ti‒B composites synthesized by combustion followed by high-temperature deformation / P. Bazhin, A. Stolin, A. Konstantinov [et al.] // Materials. ― 2016. ― Vol. 9. ― Article 1027. https://doi.org/10.3390/ma9121027.
38. Bazhin, P. М. Combustion of Ti‒Al‒C compacts in air and helium: a TRXRD study / P. M. Bazhin, D. Yu. Kovalev, M. A. Luginina [et al.] // Int. J. Self-Propagating HighTemp. Synth. ― 2016. ― Vol. 25. ― P. 30‒34. https://doi.org/10.3103/S1061386216010027.
39. Liu, T. A review of zirconia-based solid electrolytes / T. Liu, X. Zhang, X. Wang [et al.] // Ionics. ― 2016. ― Vol. 22. ― P. 2249‒2262. https://doi.org/10.1007/s11581-016-1880-1.
40. Liu, L. The ZrO2 Formation in ZrB2/SiC Composite Irradiated by Laser / L. Liu, Z. Ma, Z. Yan [et al.] // Materials. ― 2015. ― Vol. 8. ― P. 8745‒8750. https://doi.org/10.3390/ma8125475.
41. Wang, J. Comparison of corrosion behaviors and wettability of CMAS on Ta2O5‒Y2O3 costabilized ZrO2 and YSZ thermal barrier coatings / J. Wang, Y. Wang, X. Lu // J. Eur. Ceram. Soc. 2023. ― Vol. 43. ― P. 5636‒5651. https://doi.org/10.1016/j.jeurceramsoc.2023.05.020.
Дополнительные файлы
Для цитирования: Чижиков А.П., Жидович А.С., Антипов М.С., Бажин П.М., Хоменко Н.Ю. Самораспространяющийся высокотемпературный синтез композиционного материала на основе t-ZrO2‒SiO2‒TiB2. Новые огнеупоры. 2024;(2):30-36. https://doi.org/10.17073/1683-4518-2024-2-30-36
For citation: Chizhikov A.P., Zhidovich A.S., Antipov M.S., Bazhin P.M., Khomenko N.Y. Self-propelling high-temperature synthesis of composite material based on t-ZrO2‒SiO2‒TiB2 NOVYE OGNEUPORY (NEW REFRACTORIES). 2024;(2):30-36. (In Russ.) https://doi.org/10.17073/1683-4518-2024-2-30-36
Обратные ссылки
- Обратные ссылки не определены.