

Sintering of c-BC2N particles, solid solutions of metallic phases with additives of oxide components and NiCr at ultrahigh load and temperature of plasma spark sintering, high compression pressure during the explosive method
https://doi.org/10.17073/1683-4518-2023-12-42-64
Abstract
About the Author
A. V. HmelovLatvia
Riga
References
1. Kim, J.-H. Microstructures and properties of ultra fine grained W‒ZrC composites / J.-H. Kim, C. Park, J. Lim, S. Kong // J. All. Comp. ― 2015. ― Vol. 623. ― P. 282‒289.
2. Yung, D.-L. Ultra high-pressure spark plasma sintered ZrC‒Mo and ZrC‒TiC composites / D.-L. Yung, M. Antonov, L. Jaworska, I. Hussainova // J. Refract. Metals hard Mater. ― 2015. ― Vol. 61, № 2. ― P. 201‒206.
3. Hmelov, A. V. Incorporation of metallic components into a structure of titanium carbonitride at ultra-high load and temperature of spark-plasma sintering and at different compaction pressures during explosion method / A. V. Hmelov, Li Jinping // Refract. Ind. Ceram. ― 2023. ― Vol. 64, № 1. ― P. 75‒95. doi: 10.1007/s11148-023-00808-y.
4. Hmelov, A. V. Spark-plasma sintering of oxide‒non-oxide components with the addition of a TiC‒ZrC solid solution and various metal powder mixtures / A. V. Hmelov // Refract. Ind. Ceram. ― 2021. ― Vol. 61, № 5. ― P. 568‒579. doi: 10.1007/s11148-021-00522-7.
5. Hmelov, A. V. Stimulation of spark-plasma sintering of mixtures of oxide‒non-oxide components by adding a solid solution TaB<sub>2</sub>‒NbC and through a nickel melt in mixtures of metal powders / A. V. Hmelov // Refract. Ind. Ceram. ― 2021. ― Vol. 62, № 1. ― P. 74‒88. doi: 10.1007/s11148-021-00563-y.
6. Hmelov, A. V. Development of dense and hard materials based on oxide‒non-oxide compounds with added intermetallic components during spark plasma sintering / A. V. Hmelov // Refract. Ind. Ceram. ― 2022. ― Vol. 62, № 5. ― P. 570‒586. doi: 10.1007/s11148-022-00645-5.
7. Hmelov, A. V. Strengthening and reinforcing of ceramic-metallic materials by quaternary solid solutions of metallic phases during spark plasma sintering / A. V. Hmelov // Refract. Ind. Ceram. ― 2023. ― Vol. 63, № 4. ― P. 414‒435. doi: 10.1007/s11148-023-00746-9.
8. Wang B. Microstructure and properties of the Ti/Al<sub>2</sub>O<sub>3</sub>/NiCr composites fabricated by explosive compaction / B. Wang, F. Xie, X. Luo // Mat. Sci. Eng. ― 2015. ― Vol. 50, № 1. ― P. 324‒331.
9. Toropov, N. A. Phase diagrams of silicate systems / N. A. Toropov, V. P. Barzakovskii, R. V. Lapin. ― Nauka, 1979. ― Р. 437‒439.
10. Seifert H. J. Phase equilibria in the Si‒B‒C‒N system / H. J. Seifert, F. Aldinger // High-performance non-oxide ceramics. ― 2021. ― Vol. 101. ― P. 1‒58.
11. Solozhenko V. L. Prediction of novel ultra hard phases in the B‒C‒N system from first principles: progress and problems / V. L. Solozhenko, S. Matar // Materials. ― 2023. ― Vol. 16, № 2. ― P. 886‒902.
12. Vorozhtsov, A. Structural and mechanical properties of aluminium-based composites processed by explosive compaction / A. Vorozhtsov, I. Zukov, V. Promakhov // Powder Techn. ― 2017. ― Vol. 313, № 1. ― P. 251‒259.
13. Krokhalev A. V. Explosive compaction of chromium carbide powders with a metallic binder / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // Comb. Expl. Shock wave. ― 2019. ― Vol. 55, № 4. ― P. 491‒499.
14. Vorozhtcov V. A. Phase equilibriums in the Al<sub>2</sub>O<sub>3</sub>‒SiO<sub>2</sub>‒ZrO<sub>2</sub> system: Calculation and Experiment / V. A. Vorozhtcov, D. A. Yurchenko, V. I. Almjashev, V. L. Stolyarova // Glass Phys. Chem. ― 2021. ― Vol. 47, № 5. ― P. 417‒426.
15. Phillips, B. Phase equilibria in the system NiO‒Al<sub>2</sub>O<sub>3</sub>‒SiO<sub>3</sub> / B. Phillips, J. J. Hutta, I. Warshaw // J. Am. Ceram. Soc. ― 2006. ― Vol. 46, № 12. ― P. 579‒583.
16. Besmann, T. M. Thermochemical analysis and modeling of the Al<sub>2</sub>O<sub>3</sub>‒Cr<sub>2</sub>O<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub>‒SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub>‒Cr<sub>2</sub>O<sub>3</sub>‒SiO<sub>2</sub> systems relevant to refractories / T. M. Besmann, N. S. Kulkarni // J. Am. Ceram. Soc. ― 2006. ― Vol. 89, № 2. ― P. 638‒644.
17. Zygmuntowicz, J. Fabrication and characterization of ZrO<sub>2</sub>/Ni composites / J. Zygmuntowicz, P. Falkowski, A. Miazga, K. Konopka // J. Aust. Ceram. Soc. ― 2018. ― Vol. 54, № 4. ― P. 655‒662.
18. Jerebtsov, D. A. Phase diagram of the system: ZrO<sub>2</sub>‒Cr<sub>2</sub>O<sub>3</sub> / D. A. Jerebtsov, G. G. Mikhailov, S. V. Sverdina // Ceram. Inter. ― 2001. ― Vol. 27, № 3. ― P. 247‒250.
19. Kjellgust, L. Thermodynamic modeling of the Cr‒Fe‒Ni‒O system / L. Kjellgust, M. Selleby, B. Sundman // Calphad. ― 2008. ― Vol. 32, № 3. ― P. 577‒592.
20. Fang, L. Experimental study on the stability of graphitic C<sub>3</sub>N<sub>4</sub> under high pressure and high temperature / L. Fang, H. Ohfuji, T. Shinmei, T. Irifune // Diam. and related Mat. ― 2011. ― Vol. 20, № 5/6. ― P. 819‒825.
Supplementary files
For citation: Hmelov A.V. Sintering of c-BC2N particles, solid solutions of metallic phases with additives of oxide components and NiCr at ultrahigh load and temperature of plasma spark sintering, high compression pressure during the explosive method. NOVYE OGNEUPORY (NEW REFRACTORIES). 2023;(12):42-64. https://doi.org/10.17073/1683-4518-2023-12-42-64
Refbacks
- There are currently no refbacks.