Open Access Open Access  Restricted Access Subscription Access

Sintering of c-BC2N particles, solid solutions of metallic phases with additives of oxide components and NiCr at ultrahigh load and temperature of plasma spark sintering, high compression pressure during the explosive method


https://doi.org/10.17073/1683-4518-2023-12-42-64

Full Text:




Abstract

   The article shows the effect of ultra-high pressing loading 1,65 GPа at 1800 °C during spark plasma sintering, pressure compaction 2,30 GPa at 1260 °C during explosion sintering of the particles of solid solutions of ceramic and metallic phases with the additive of the mixture of oxide powders, NiCr on the phase composition, microstructure, grains sizes of crystalline phases, relative density, linear shrinkage, microstructural features of boundary layers, paths of microcracks, physical-mechanical properties of mullite‒c-ZrO2‒c-BC2N‒NiCr‒V‒Mo‒Zr‒W, mullite‒c-ZrO2‒c-BC2N‒NiCr‒Cr‒Mo‒Nb‒Ta samples. Synthesized powders of h-BN and NiCr are characterisized by different intensity of crystalli-zation of h-BN and NiCr phases, respectively. Sintered by spark plasma method c-ZrO2 at pressing loading 35 MPa and 1400 °C, g-BC2N at pressing loading 60 MPa and 950 oC show evoluted crystallization of c-ZrO2 and g-BC2N phases, respectively, crystalline, uniform, dense micro-structures. Sintered at ultra-high pressing loading 1,65 GPa by spark plasma method samples show evoluted mullitization, crystallization of c-ZrO2, c-BC2N, NiCr, β-V,Mo,W,Zr, β-Cr,Mo,Nb,Ta phases, more crystalline, uniform and densely sintered microstructures, variously dispersed grains of crystalline phases at 1800 °C unlike the samples, obtained by the explosion sintering. Sintered by two methods samples are differ by the density, uniformity, width, path of boundary layers and propagating microcracks across these boundary layers, the resistance to the cracking, values of physical-mechanical properties.

About the Author

A. V. Hmelov
Riga Technical University, Institute of Silicate Materials
Latvia
Riga


References

1. Kim, J.-H. Microstructures and properties of ultra fine grained W‒ZrC composites / J.-H. Kim, C. Park, J. Lim, S. Kong // J. All. Comp. ― 2015. ― Vol. 623. ― P. 282‒289.

2. Yung, D.-L. Ultra high-pressure spark plasma sintered ZrC‒Mo and ZrC‒TiC composites / D.-L. Yung, M. Antonov, L. Jaworska, I. Hussainova // J. Refract. Metals hard Mater. ― 2015. ― Vol. 61, № 2. ― P. 201‒206.

3. Hmelov, A. V. Incorporation of metallic components into a structure of titanium carbonitride at ultra-high load and temperature of spark-plasma sintering and at different compaction pressures during explosion method / A. V. Hmelov, Li Jinping // Refract. Ind. Ceram. ― 2023. ― Vol. 64, № 1. ― P. 75‒95. doi: 10.1007/s11148-023-00808-y.

4. Hmelov, A. V. Spark-plasma sintering of oxide‒non-oxide components with the addition of a TiC‒ZrC solid solution and various metal powder mixtures / A. V. Hmelov // Refract. Ind. Ceram. ― 2021. ― Vol. 61, № 5. ― P. 568‒579. doi: 10.1007/s11148-021-00522-7.

5. Hmelov, A. V. Stimulation of spark-plasma sintering of mixtures of oxide‒non-oxide components by adding a solid solution TaB<sub>2</sub>‒NbC and through a nickel melt in mixtures of metal powders / A. V. Hmelov // Refract. Ind. Ceram. ― 2021. ― Vol. 62, № 1. ― P. 74‒88. doi: 10.1007/s11148-021-00563-y.

6. Hmelov, A. V. Development of dense and hard materials based on oxide‒non-oxide compounds with added intermetallic components during spark plasma sintering / A. V. Hmelov // Refract. Ind. Ceram. ― 2022. ― Vol. 62, № 5. ― P. 570‒586. doi: 10.1007/s11148-022-00645-5.

7. Hmelov, A. V. Strengthening and reinforcing of ceramic-metallic materials by quaternary solid solutions of metallic phases during spark plasma sintering / A. V. Hmelov // Refract. Ind. Ceram. ― 2023. ― Vol. 63, № 4. ― P. 414‒435. doi: 10.1007/s11148-023-00746-9.

8. Wang B. Microstructure and properties of the Ti/Al<sub>2</sub>O<sub>3</sub>/NiCr composites fabricated by explosive compaction / B. Wang, F. Xie, X. Luo // Mat. Sci. Eng. ― 2015. ― Vol. 50, № 1. ― P. 324‒331.

9. Toropov, N. A. Phase diagrams of silicate systems / N. A. Toropov, V. P. Barzakovskii, R. V. Lapin. ― Nauka, 1979. ― Р. 437‒439.

10. Seifert H. J. Phase equilibria in the Si‒B‒C‒N system / H. J. Seifert, F. Aldinger // High-performance non-oxide ceramics. ― 2021. ― Vol. 101. ― P. 1‒58.

11. Solozhenko V. L. Prediction of novel ultra hard phases in the B‒C‒N system from first principles: progress and problems / V. L. Solozhenko, S. Matar // Materials. ― 2023. ― Vol. 16, № 2. ― P. 886‒902.

12. Vorozhtsov, A. Structural and mechanical properties of aluminium-based composites processed by explosive compaction / A. Vorozhtsov, I. Zukov, V. Promakhov // Powder Techn. ― 2017. ― Vol. 313, № 1. ― P. 251‒259.

13. Krokhalev A. V. Explosive compaction of chromium carbide powders with a metallic binder / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // Comb. Expl. Shock wave. ― 2019. ― Vol. 55, № 4. ― P. 491‒499.

14. Vorozhtcov V. A. Phase equilibriums in the Al<sub>2</sub>O<sub>3</sub>‒SiO<sub>2</sub>‒ZrO<sub>2</sub> system: Calculation and Experiment / V. A. Vorozhtcov, D. A. Yurchenko, V. I. Almjashev, V. L. Stolyarova // Glass Phys. Chem. ― 2021. ― Vol. 47, № 5. ― P. 417‒426.

15. Phillips, B. Phase equilibria in the system NiO‒Al<sub>2</sub>O<sub>3</sub>‒SiO<sub>3</sub> / B. Phillips, J. J. Hutta, I. Warshaw // J. Am. Ceram. Soc. ― 2006. ― Vol. 46, № 12. ― P. 579‒583.

16. Besmann, T. M. Thermochemical analysis and modeling of the Al<sub>2</sub>O<sub>3</sub>‒Cr<sub>2</sub>O<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub>‒SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub>‒Cr<sub>2</sub>O<sub>3</sub>‒SiO<sub>2</sub> systems relevant to refractories / T. M. Besmann, N. S. Kulkarni // J. Am. Ceram. Soc. ― 2006. ― Vol. 89, № 2. ― P. 638‒644.

17. Zygmuntowicz, J. Fabrication and characterization of ZrO<sub>2</sub>/Ni composites / J. Zygmuntowicz, P. Falkowski, A. Miazga, K. Konopka // J. Aust. Ceram. Soc. ― 2018. ― Vol. 54, № 4. ― P. 655‒662.

18. Jerebtsov, D. A. Phase diagram of the system: ZrO<sub>2</sub>‒Cr<sub>2</sub>O<sub>3</sub> / D. A. Jerebtsov, G. G. Mikhailov, S. V. Sverdina // Ceram. Inter. ― 2001. ― Vol. 27, № 3. ― P. 247‒250.

19. Kjellgust, L. Thermodynamic modeling of the Cr‒Fe‒Ni‒O system / L. Kjellgust, M. Selleby, B. Sundman // Calphad. ― 2008. ― Vol. 32, № 3. ― P. 577‒592.

20. Fang, L. Experimental study on the stability of graphitic C<sub>3</sub>N<sub>4</sub> under high pressure and high temperature / L. Fang, H. Ohfuji, T. Shinmei, T. Irifune // Diam. and related Mat. ― 2011. ― Vol. 20, № 5/6. ― P. 819‒825.


Supplementary files

For citation: Hmelov A.V. Sintering of c-BC2N particles, solid solutions of metallic phases with additives of oxide components and NiCr at ultrahigh load and temperature of plasma spark sintering, high compression pressure during the explosive method. NOVYE OGNEUPORY (NEW REFRACTORIES). 2023;(12):42-64. https://doi.org/10.17073/1683-4518-2023-12-42-64

Views: 77

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)