

Полые наноструктурные микросферы Ni3Fe, полученные методом спрей-пиролиза
https://doi.org/10.17073/1683-4518-2023-12-32-37
Аннотация
Представлено исследование двухстадийного метода формирования наноструктурированного Ni3Fe. Наноструктурированные полые микросферы Ni3Fe были синтезированы методом ультразвукового распылительного пиролиза (УРП) из смеси водного 10 %-ного раствора нитратов никеля (II) и железа (III). На первом этапе формировались полые микросферы из смеси оксидов Ni и Fe диаметром в интервале 0,5‒10 мкм. Второй этап ― металлизация смеси оксидов Ni и Fe в трубчатой печи в атмосфере водорода. Данные рентгенографии (XRD) конечного продукта показали наличие фазы Ni3Fe и размер кристаллитов, близкий к 40 нм. Сканирующая и просвечивающая электронная микроскопия показала полую морфологию поученных микросфер Ni3Fe. Их стенки были собраны из кристаллитов диаметром 30‒60 нм.
Об авторах
Б. Б. ХайдаровРоссия
к. т. н.
Москва
А. Г. Юдин
Россия
к. т. н.
Москва
Д. С. Суворов
Россия
Москва
Д. В. Кузнецов
Россия
к. т. н.
Москва
Д. В. Лысов
Россия
Москва
И. Н. Бурмистров
Россия
д. т. н.
Москва
Д. Ю. Карпенков
Россия
к. ф.-м. н.
Москва
Список литературы
1. Marinca, T. F. Composite magnetic powder of Ni<sub>3</sub> Fe/Fe<sub>3</sub> O<sub>4</sub> type obtained from Fe/NiO/Fe<sub>2</sub>O<sub>3</sub> mixtures by mechanosynthesis and annealing / T. F. Marinca, H. F. Chicinas, B. V. Neamt [et al.] // Journal of Alloys and Compounds. ― 2017. ― Vol. 714. ― P. 484‒492. doi: 10.1016/j.jallcom.2017.04.263.
2. Marinca, T. F. Structural, thermal and magnetic characteristics of Fe<sub>3</sub>O<sub>4</sub>/Ni<sub>3</sub>Fe composite powder obtained by mechanosynthesis-annealing route / T. F. Marinca, H. F. Chicinas, B. V. Neamt [et al.] // Journal of Alloys and Compounds. ― 2015. ― Vol. 652. ― P. 313‒321. doi: 10.1016/j.jallcom.2015.08.249.
3. Fouad, D. M. Spectroscopic characterization of magnetic Fe<sub>3</sub>O<sub>4</sub>/Au core shell nanoparticles / D. M. Fouad, W. A. El-Said, M. B. Mohamed // Spectrochim. Acta. Part A. Mol. Biomol. Spectrosc. ― 2015. ― Vol. 140. ― P. 392‒397. doi: 10.1016/j.saa.2014.12.097.
4. Zhukova, V. Effect of annealing on magnetic properties and structure of Fe‒Ni based magnetic microwires / V. Zhukova, O. A. Korchuganova, A. A. Aleev [et al.] // Journal of Magnetism and Magnetic Materials ― 2017. ― Vol. 433. ― P. 278‒284. doi: 10.1016/j.jmmm.2017.03.028.
5. Vazquez, M. On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies / M. Vazquez, H. Chiriac, A. Zhukov [et al.] // Phys. Status Solidi A. ― 2011. ― Vol. 208. ― P. 493‒501. doi: 10.1002/pssa.201026488.
6. Gemperle, R. Magnetization reversal in amorphous (Fe<sub>1-x</sub> Nix)<sub>80</sub>P<sub>10</sub>B<sub>10</sub> microwires / R. Gemperle, L. Kraus, J. Schneider // Czezh J. Phys. B. ― 1978. ― Vol. 28. ― P. 1138‒1145. doi: 10.1007/BF01602803.
7. Zhukov, A. Advances in giant magnetoimpedance of materials / A. Zhukov, M. Ipatov, V. Zhukova // In: K.H.J. Buschow (Ed.), Handbook of Magnetic Materials. ― 2015. ― Vol. 24. ― P. 139‒236. doi: 10.1016/bs.hmm.2015.09.001.
8. Chiriac, H. Magnetic behavior of rapidly quenched submicron amorphous wires / H. Chiriac, S. Corodeanu, M. Lostun [et al.] // J. Appl. Phys. ― 2010. ― Vol. 107, № 9. ― P. 09A301‒09A301-3. doi: 10.1063/1.3334168.
9. Sun, X. Evolution of structure and magnetism from NixFe<sub>3‒x</sub>O<sub>4</sub> (x = 0, 0,5, 1 and 1,5) to Ni‒Fe alloys and to Ni‒Fe‒N / X. Sun, X. Zhang, P. Wang [et al.] // Materials Research Bulletin. ― 2017. ― Vol. 95. ― P. 261‒266. doi: 10.1016/j.materresbull.2017.07.030.
10. Ren, H. R. Evolution of microstructure, mechanical and magnetic properties of electrodeposite 50 % Ni‒Fe alloy foil after thermal treatment / H. R. Ren, J. T. Gao, Z. Wang [et al.] // Journal of Iron and Steel Research, International. ― 2017. ― Vol. 24, № 8. ― P. 844‒851. doi: 10.1016/S1006-706X(17)30125-5.
11. Tamaekong, N. Flame-spray-made undoped zinc oxide films for gas sensing applications / N. Tamaekong, C. Liewhiran, A. Wisitsoraat [et al.] // Sensors. ― 2010. ― Vol. 10, № 8. ― P. 7863‒7873. doi: 10.3390/s100807863.
12. Nunes, P. Performances presented by zinc oxide thin films deposited by spray pyrolysis / P. Nunes, B. Fernandes, E. Fortunato [et al.] // Thin Solid Films. ― 1999. ― Vol. 337, № 1/2. ― P. 176‒179. doi: 10.1016/S0040-6090(98)01394-7.
13. Fauzia, V. High figure of merit transparent conducting Sb-doped SnO<sub>2</sub> thin films prepared via ultrasonic spray pyrolysis / V. Fauzia, M. N. Yusnidar, L. H. Lalasari [et al.] // Journal of Alloys and Compounds. ― 2017. ― Vol. 720. ― P. 79‒85. doi: 10.1016/j.jallcom.2017.05.243.
14. Gupta, S. Microstructural, optical, and electrical investigations of Sb‒SnO<sub>2</sub> thin films deposited by spray pyrolysis / S. Gupta, B. C. Yadav, P. K. Dwivedi [et al.] // Mater. Res. Bull. ― 2013. ― Vol. 48, № 9. ― P. 3315‒3322. doi: 10.1016/j.materresbull.2013.05.001.
15. Yao, P. Effects of Sb doping level on the properties of Ti/SnO<sub>2</sub>‒Sb electrodes prepared using ultrasonic spray pyrolysis / Р. Yao // Desalination. ― 2011. ― Vol. 267, № 2/3. ― P. 170‒174. doi: 10.1016/j.desal.2010.09.021.
16. Singh, R. Effects of Sb, Zn doping on structural, electrical, and optical properties of SnO<sub>2</sub> thin films / R. Singh, M. Kumar, S. Shankar [et al.] // Mater. Sci. Semicond. Process. ― 2015. ― Vol. 31. ― P. 310‒314. doi: 10.1016/j.mssp.2014.12.010.
17. Babar, A. R. Effect of intermittent time on structural, optoelectronic, luminescence properties of sprayed antimony doped tin oxide thin films / A. R. Babar, K. Y. Rajpure // J. Anal. Appl. Pyrolysis. ― 2015. ― Vol. 112. ― P. 214‒220. doi: 10.1016/j.jaap.2015.01.024.
18. Gürakar, S. Studies on optical properties of antimony doped SnO<sub>2</sub> films / S. Gürakar, T. Serin, N. Serin // Appl. Surf. Sci. ― 2015. ― Vol. 352. ― P. 16‒22. doi: 10.1016/j.apsusc.2015.03.057.
19. Wongcharoen, N. Co-existence of F and Sb dopants in transparent conducting SnO<sub>2</sub> thin films prepared by ultrasonic spray pyrolysis method / N. Wongcharoen, T. Gaewdang // Proceedings of ISES World Congress 2007: Solar Energy and Human Settlement. ― 2009. ― Vol. 1. ― P. 1269‒1274. doi: 10.1007/978-3-540-75997-3_256.
20. Ramírez, E. A. Cu2ZnSnS4 films grown in one-step process by spray pyrolysis with improved properties / E. A. Ramírez, A. Ramírez, G. Gordillo // Materials Science in Semiconductor Processing. ― 2017. ― Vol. 67. ― P. 110‒117. doi: 10.1016/j.mssp.2017.05.024.
21. Katagiri, H. Enhanced сonversion efficiencies of Cu<sub>2</sub>ZnSnS<sub>4</sub>-based thin film solar cells by using preferential etching technique / H. Katagiri, K. Jimbo, S. Yamada [et al.] // Appl. Phys. Express. ― 2008. ― Vol. 1, 4. ― Article 041201. DOI: 10.1143/APEX.1.041201.
22. Barkhouse, D. A. R. Device characteristics of a 10,1 % hydrazine-processed Cu<sub>2</sub>ZnSn(Se,S)<sub>4</sub> solar cell / D. A. R. Barkhouse, O. Gunawan, T. Gokmen [et al.] // Progress in Photovoltaics: Research and Applications. ― 2012. ― Vol. 20. ― P. 6‒11. doi: 10.1002/pip.1160.
23. Todorov, T. K. Beyond 11 % efficiency: Characteristics of state-of-the-art Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> solar cells / T. K. Todorov, J. Tang, S. Bag [et al.] // Advanced Energy Materials. ― 2013. ― Vol. 3, № 1. ― P. 34‒38. doi: 10.1002/aenm.201200348.
24. Menaka, S. M. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis / S. M. Menaka, G. Umadevi, M. Manickam // Materials Chemistry and Physics. ― 2017. ― Vol. 191. ― P. 181‒187. doi: 10.1016/j.matchemphys.2017.01.048.
25. Vehring, R. Pharmaceutical particle engineering via spray drying / R. Vehring // Pharmaceutical Research. ― 2008. ― Vol. 25, № 5. ― P. 999‒1022. DOI: 10.1007/s11095-007-9475-1.
26. Widiyastuti, W. Simulation and experimental study of spray pyrolysis of polydispersed droplets / W. Widiyastuti, W. N. Wang, I. W. Lenggoro [et al.] // Journal of Materials Research. ― 2007. ― Vol. 22, № 7. ― P. 1888‒1898. doi: 10.1557/jmr.2007.0235.
27. Okuyama, K. Preparation of functional nanostructured particles by spray drying / K. Okuyama, M. Abdullah, I. W. Lenggoro [et al.] // Advanced Powder Technology. ― 2006. ― Vol. 17, № 6. ― P. 587‒611. doi: 10.1163/156855206778917733.
28. Chang, H. W. Optical properties of dense and porous spheroids consisting of primary silica nanoparticles / H. W. Chang, K. Okuyama // Journal of Aerosol Science. ― 2002. ― Vol. 33, № 12. ― P. 1701‒1720. doi: 10.1016/S0021-8502(02)00116-7.
29. Pal, M. Scalable synthesis of mesoporous titania microspheres via spray-drying method / M. Pal, L. Wan, Y. Zhu [et al.] // Journal of Colloid and Interface Science. ― 2016. ― Vol. 479. ― P. 150‒159. doi: 10.1016/j.jcis.2016.06.063.
30. Iskandar, F. Nanoparticle processing for optical applications ― a review / F. Iskandar // Advanced Powder Technology. ― 2009. ― Vol. 20, № 4. ― P. 283‒292. doi: 10.1016/j.apt.2009.07.001.
31. Ogi, T. Synthesis of nanocrystalline GaN from Ga<sub>2</sub>O<sub>3</sub> nanoparticles derived from salt-assisted spray pyrolysis / T. Ogi, Y. Kaihatsu, F. Iskandar [et al.] // Adv. Powder Technol. ― 2009. ― Vol. 20, № 1. ― P. 29‒34. doi: 10.1016/j.apt.2008.10.005.
32. Mikrajuddin. Stable photoluminescence of zinc oxide quantum dots in silica nanoparticles matrix prepared by the combined sol-gel and spray drying method / Mikrajuddin, F. Iskandar, K. Okuyama [et al.] // J. Appl. Phys. ― 2001. ― Vol. 89, № 11. ― P. 6431‒6434. doi: 10.1063/1.1360706.
33. Iskandar, F. In situ production of spherical silica particles containing self-organized mesopores / F. Iskandar, Mikrajuddin, K. Okuyama // Nano Lett. ― 2001. ― Vol. 1, № 5. ― P. 231‒234. doi: 10.1021/nl0155227.
34. Iskandar, F. Preparation of microencapsulated powders by an aerosol spray method and their optical properties / F. Iskandar, H. W. Chang, K. Okuyama // Advanced Powder Technology. ― 2003. ― Vol. 14, № 3. ― P. 349‒367. doi: 10.1163/15685520360685983.
35. Freitas, S. Ultrasonic atomization into reduced pressure atmosphere‒envisaging aseptic spray-drying for micro-encapsulation / S. Freitas, H. P. Merkle, B. Gander // Journal of Controlled Release. ― 2004. ― Vol. 95, № 2. ― P. 185‒195. doi: 10.1016/j.jconrel.2003.11.005.
36. Gong, J.-S. The experimental study on the flow characteristics for a swirling gas–liquid spray atomizer / J.-S. Gong, W.-B. Fu // Applied Thermal Engineering. ― 2007. ― Vol. 27. ― P. 2886‒2892. doi: 10.1016/j.applthermaleng.2007.04.006.
37. Hede, P. D. Two-fluid spray atomization and pneumatic nozzles for fluid bed coating/agglomeration purposes : A review / P. D. Hede, P. Bach, A. D. Jensen // Chemical Engineering Science. ― 2008. ― Vol. 63, № 14. ― P. 3821‒3842. doi: 10.1016/j.ces.2008.04.014.
38. Ksapabutr, B. Dense and uniform NiO thin films fabricated by one-step electrostatic spray deposition / B. Ksapabutr, P. Nimnuan, M. Panapoy // Materials Letters. ― 2015. ― Vol. 153. ― P. 24‒28. doi: 10.1016/j.matlet.2015.03.151.
39. Xie, J.-b. AgNi15 composite particles prepared by ultrasonic arc spray atomization method / J.-b. Xie, C.-m. Wen, G.-y. Qin [et al.] // Transactions of Nonferrous Metals Society of China. ― 2014. ― Vol. 24, № 11. ― P. 3556‒3561. doi: 10.1016/S1003-6326(14)63501-9.
40. Yuan, L. Ignition of hydraulic fluid sprays by open flames and hot surfaces / L. Yuan // Journal of Loss Prevention in the Process Industries. ― 2006. ― Vol. 19, № 4. ― P. 353‒361. doi: 10.1016/j.jlp.2005.09.001.
41. Nandiyanto, A. B. D. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges / A. B. D. Nandiyanto, K. Okuyama // Advanced Powder Technology. ― 2011. ― Vol. 22, № 1. ― P. 1‒19. doi: 10.1016/j.apt.2010.09.011.
42. Yudin, A. Synthesis of hollow nanostructured nickel oxide microspheres by ultrasonic spray atomization / A. Yudin, N. Shatrova, B. Khaydarov [et al.] // Journal of Aerosol Science. ― 2016. ― Vol. 98. ― P. 30‒40. doi: 10.1016/j.jaerosci.2016.05.003.
43. Shatrova, N. Elaboration, characterization and magnetic properties of cobalt nanoparticles synthesized by ultrasonic spray pyrolysis followed by hydrogen reduction / N. Shatrova, A. Yudin, V. Levina [et al.] // Materials Research Bulletin. ― 2017. ― Vol. 86. ― P. 80‒87. doi: 10.1016/j.materresbull.2016.10.010.
Дополнительные файлы
Для цитирования: Хайдаров Б.Б., Юдин А.Г., Суворов Д.С., Кузнецов Д.В., Лысов Д.В., Бурмистров И.Н., Карпенков Д.Ю. Полые наноструктурные микросферы Ni3Fe, полученные методом спрей-пиролиза. Новые огнеупоры. 2023;(12):32-37. https://doi.org/10.17073/1683-4518-2023-12-32-37
For citation: Khaidarov B.B., Yudin A.G., Suvorov D.S., Kuznetsov D.V., Lysov D.V., Burmistrov I.N., Karpenkov D.Y. Hollow nanostructured microspheres Ni3Fe, obtained by spray-pyrolysis. NOVYE OGNEUPORY (NEW REFRACTORIES). 2023;(12):32-37. (In Russ.) https://doi.org/10.17073/1683-4518-2023-12-32-37
Обратные ссылки
- Обратные ссылки не определены.