

Влияние высокотемпературного отжига на структуру и свойства композиционного материала на основе TiC/TiB2/Ti3SiC2
https://doi.org/10.17073/1683-4518-2023-8-48-53
Аннотация
Проведен высокотемпературный отжиг композиционного материала на основе MAX-фазы Ti3SiC2, дисперсно-упрочненного частицами TiC и TiB2, полученного методом свободного СВС-сжатия. Отжиг проводили в окислительной атмосфере при 900, 1100 и 1300 °С в течение 10 ч и при 1400 °С в течение 4 ч. Построены зависимости удельного прироста массы окисленных образцов и скорости окисления от температуры и времени отжига. На основе рентгенофазового анализа, результатов сканирующей электронной микроскопии и энергодисперсионного анализа установлено влияние температуры отжига на фазовый состав, структуру и механические свойства материалов. Установлено, что с повышением температуры отжига в материале происходит повышение доли MAX-фазы с 26 до 63 мас. %.
Об авторах
А. С. КонстантиновРоссия
Кандидат технических наук
г. Черноголовка, Московская обл.
А. П. Чижиков
Россия
Кандидат технических наук
г. Черноголовка, Московская обл.
М. С. Антипов
Россия
г. Черноголовка, Московская обл.
П. М. Бажин
Россия
Доктор технических наук
г. Черноголовка, Московская обл.
Н. Ю. Хоменко
Россия
г. Черноголовка, Московская обл.
Список литературы
1. Zou, Q. Effects of Ti3SiC2 on microstructure and properties of TiC0,4 enhanced TiAl matrix composites / Q. Zou, L. Bu, Y. Li [et al.] // Mater. Chem. Phys. ― 2023. ― Vol. 297. ― Article 127330. https://doi.org/10.1016/j.matchemphys.2023.127330.
2. Kwon, H. Fabrication of SiCf/Ti3SiC2 by the electrophoresis of highly dispersed Ti3SiC2 powder / H. Kwon, X. Zhou, D. Yoon // Ceram. Int. ― 2020. ― Vol. 46, № 11. ― P. 18168‒18174. https://doi.org/10.1016/j.ceramint.2020.04.138.
3. Liu, Z. Molten salt dynamic sealing synthesis of MAX phases (Ti3AlC2, Ti3SiC2 et al.) powder in air / Z. Liu, J. Xu, X. Xi // Ceram. Int. ― 2023. ― Vol. 49, № 1. ― P. 168‒178. https://doi.org/10.1016/j.ceramint.2022.08.325.
4. Chen, H. Effects of microfluidic morphologies on the interfacial microstructure and mechanical properties of Ti3SiC2 ceramic and pure copper brazed joints / H. Chen, S. Zhao, X. Nai // Ceram. Int. ― 2023. ― Vol. 49, № 10. ― P. 16370‒16378. https://doi.org/10.1016/j.ceramint.2023.01.239.
5. Yang, Z. Electrical conductivities and mechanical properties of Ti3SiC2 reinforced Cu-based composites prepared by cold spray / Z. Yang, J. Xu, Y. Qian // J. Alloys Compd. ― 2023. ― Vol. 946. ― Article 169473. https://doi.org/10.1016/j.jallcom.2023.169473.
6. Hanson, W. A. Ionizing vs collisional radiation damage in materials: Separated, competing, and synergistic effects in Ti3SiC2 / W. A. Hanson, M. K. Patel, M. L. Crespillo [et al.] // Acta Mater. ― 2019. ― Vol. 50. ― P. 195‒205.
7. Zhang, H. L. The damage evolution of He irradiation on Ti3SiC2 as a function of annealing temperature / H. L. Zhang, R. R. Su, L. Q. Shi [et al.] // J. Eur. Ceram. Soc. ― 2018. ― Vol. 38, № 4. ― P. 1253‒1264.
8. Zhang, H. L. Helium effects and bubbles formation in irradiated Ti3SiC2 / H. L. Zhang, R. R. Su, I. Szlufarska [et al.] // J. Eur. Ceram. Soc. ― 2021. ― Vol. 41, № 1. ― P. 252‒258.
9. Islak, B. Y. Evaluation of properties of spark plasma sintered Ti3SiC2 and Ti3SiC2/SiC composites / B. Y. Islak, E. Ayas // Ceram. Int. ― 2019. ― Vol. 45, № 9. ― P. 12297-12306.
10. Islak, B. Y. Synthesis and properties of TiB2/Ti3SiC2 composites / B. Y. Islak, D. Candar // Ceram. Int. ― 2020. ― Vol. 47, № 1. ― P. 1439-1446.
11. Bykova, A. D. Influence of synthesis parameters on density and phase composition of materials based on Ti3SiC2 / A. D. Bykova, V. V. Semenova, S. N. Perevislov [et al.] // Refract. Ind. Ceram. ― 2021. ― Vol. 62, № 1. ― P. 89‒93.
12. Uchida, Y. Fabrication and Mechanical Properties of Textured Ti3SiC2 Systems Using Commercial Powder / Y. Uchida, K. Morita, T. S. Suzuki [et al.] // Mater. Trans. ― 2018. ― Vol. 59, № 5. ― P. 829‒834.
13. Zou, W. J. Mechanical, thermal physical properties and thermal shock resistance of in situ (TiB2 + SiC)/ Ti3SiC2 composite / W. J. Zou, H. B. Zhang, J. Yang [et al.] // J. Alloys Compd. ― 2018. ― Vol. 741. ― P. 44‒50.
14. Luan, S. R. High Lithium-Ion Storage Performance of Ti3SiC2 MAX by Oxygen Doping / S. R. Luan, J. S. Zhou, Y. K. Xi [et al.] // Chem. ― 2019. ― Vol. 4, № 18. ― P. 5319‒5321.
15. Li, Y. First principles study of stability, electronic structure and fracture toughness of Ti3SiC2/TiC interface / Y. Li, X. Z. Zhang, S. Y. Zhang [et al.] // Vac. ― 2022. ― Vol. 196. ― Article 110745.
16. Alves, M. F. R. P. Preparation of TiC/Ti3SiC2 composite by sintering mechanical alloyed Ti‒Si‒C powder mixtures / M. F. R. P. Alves, C. dos Santos, B. X. de Freitas [et al.] // J. Nanosci. Nanotech. ― 2020. ― Vol. 20, № 7. ― P. 4580-4586.
17. Islak, B. Y. Synthesis and properties of TiB2/Ti3SiC2 composites / B. Y. Islak, D. Candar // Ceram. Int. ― 2021. ― Vol. 47, № 1. ― P. 1439‒1446. https://doi.org/10.1016/j.ceramint.2020.09.098.
18. Севостьянов, Н. В. Высокотемпературное окисление материалов на основе MAX-фазы Ti3SiC2, синтезированных методом искрового плазменного спекания / Н. В. Севостьянов, О. В. Басаргин, В. Г. Максимов // Неорг. матер. ― 2019. ― Т. 55, № 1. ― С. 11‒15. https:// doi.org/10.1134/S0002337X19010111.
19. Csáki, Š. Preparation of Ti3SiC2 MAX phase from Ti, TiC, and SiC by SPS / Š. Csáki, F. Lukáč, J. Veverka // Ceram. Int. ― 2022. ― Vol. 48, № 19. ― P. 28391‒28395. https://doi.org/10.1016/j.ceramint.2022.06.149.
20. Chen, D. Mechanical performance and oxidation resistance of SiC castables with lamellar Ti3SiC2 coatings on SiC aggregates prepared by SPS / D. Chen, H. Gu, A. Huang [et al.] // J. Alloys Compd. ― 2019. ― Vol. 791. ― P. 461‒468. https://doi.org/10.1016/j.jallcom.2019.03.358.
21. Magnus, C. Microstructures and intrinsic lubricity of in situ Ti3SiC2‒TiSi2‒TiC MAX phase composite fabricated by reactive spark plasma sintering (SPS) / C. Magnus, D. Cooper, L. Ma // Wear. ― 2020. ― Vol. 448, 449. ― Article 203169. https://doi.org/10.1016/j.wear.2019.203169.
22. Galvin, T. Laser sintering of electrophoretically deposited (EPD) Ti3SiC2 MAX phase coatings on titanium / T. Galvin, N. C. Hyatt, W. M. Rainforth // Surf. Coat. Technol. ― 2019. ― Vol. 366. ― P. 199‒203. https://doi.org/10.1016/j.surfcoat.2019.03.031.
23. Magnus, C. Synthesis and microstructural evolution in ternary metalloceramic Ti3SiC2 consolidated via the Maxthal 312 powder route / C. Magnus, T. Galvin, L. Ma // Ceram. Int. ― 2020. ― Vol. 46, № 10. ― P. 15342‒15356. https://doi.org/10.1016/j.ceramint.2020.03.078.
24. Chahhou, B. Synthesis of Ti3SiC2 coatings onto SiC monoliths from molten salts / B. Chahhou, C. LabrugèreSarroste, F. Ibalot // J. Eur. Ceram. Soc. ― 2022. ― Vol. 42, № 13. ― P. 5484‒5492. https://doi.org/10.1016/j.jeurceramsoc.2022.05.054.
25. Xu, H. Microstructure and properties of plasma sprayed copper-matrix composite coatings with Ti3SiC2 addition / H. Xu, T. Fu, P. Wang // Surf. Coat. Technol. ― 2023. ― Vol. 460. ― Article 129434. https://doi.org/10.1016/j.surfcoat.2023.129434.
26. Xiong, Y. Fabrication of TiC coated short carbon fiber reinforced Ti3SiC2 composites: Process, microstructure and mechanical properties / Y. Xiong, H. Li, J. Huang // J. Eur. Ceram. Soc. ― 2022. ― Vol. 42, № 9. ― P. 3770‒3779. https://doi.org/10.1016/j.jeurceramsoc.2022.03.024.
27. Jiang, X. Microstructures and mechanical properties of Cu/Ti3SiC2/C/graphene nanocomposites prepared by vacuum hot-pressing sintering and hot isostatic pressing / X. Jiang, W. Liu, Y. Li [et al.] // Composites. Part B. ― 2018. ― Vol. 141. ― P. 203‒213. https://doi.org/10.1016/j.compositesb.2017.12.050.
28. Li, M. Novel WC‒Co‒Ti3SiC2 cemented carbide with ultrafine WC grains and improved mechanical properties / M. Li, M. Gong, Z. Cheng [et al.] // Ceram. Int. ― 2022. ― Vol. 48, № 15. ― P. 22335‒22342. https://doi.org/10.1016/j.ceramint.2022.04.239.
29. Qi, F. Improved mechanical properties of Al2O3 ceramic by in-suit generated Ti3SiC2 and TiC via hot pressing sintering / F. Qi, Z. Wang, J. Wu // Ceram Int. ― 2017. ― Vol. 43, № 14. ― P. 10691‒10697. https://doi.org/10.1016/j.ceramint.2017.04.165.
30. Li, S. Oxidation behavior of Ti3SiC2 at high temperature in air / S. Li, L. Cheng, L. Zhang // Mater. Sci. Eng., A. ― 2003. ― Vol. 1. ― P. 112‒120. https://doi.org/10.1016/S0921-5093(02)00210-1.
31. Bazhin, P. M. In-situ study of the process of selfpropagating high-temperature synthesis of titanium carbide with a nichrome binder / P. M. Bazhin, M. S. Antipov, A. S. Konstantinov // Mater. Lett. ― 2022. ― Vol. 308. ― Article 131086. https://doi.org/10.1016/j.matlet.2021.131086.
32. Bazhin, P. M. Ceramic Ti‒B composites synthesized by combustion followed by high-temperature deformation / P. M. Bazhin, A. M. Stolin, A. S. Konstantinov [et al.] // Mater. ― 2016. ― Vol. 9. ― P. 1027‒1032. https://doi.org/10.3390/ma9121027.
33. Vershinnikov, V. I. Formation of V2AlC MAX phase by SHS involving magnesium reduction of V2O5 / V. I. Vershinnikov, D. Yu. Kovalev // Ceram. Int. ― 2023. ― Vol. 49, № 4. ― P. 6063‒6067. https://doi.org/10.1016/j.ceramint.2022.10.134.
34. Bazhina, A. D. Materials based on the MAX phases of the Ti‒Al‒C system obtained under combustion and high-temperature shear deformation / A. D. Bazhina, A. S. Konstantinov, A. P. Chizhikov [et al.] // Mater. Lett. ― 2022. ― Vol. 318. ― Article 132196. https://doi.org/10.1016/j.matlet.2022.132196.
35. Prokopets, A. D. Structure and mechanical characteristics of a laminated Ti3AlC2 MAX Phase-based composite material prepared by a free Self-propagating high-temperature synthesis compression method / A. D. Prokopets, P. M. Bazhin, A. S. Konstantinov [et al.] // Inorg. Mater. ― 2021. ― Vol. 57, № 9. ― P. 937‒941. https://doi.org/10.1134/S0020168521090132. Прокопец, А. Д. Строение и механические характеристики слоистого композиционного материала на основе МАХ-фазы Ti3AlC2, полученного методом свободного СВС-сжатия / А. Д. Прокопец, П. М. Бажин, А. С. Константинов [и др.] // Неорганические материалы. ― 2021. ― Т. 57, № 9. ― С. 986‒990. https://doi.org/10.31857/S0002337X2109013X.
36. Prokopets, A. D. General trends of structure formation in graded composite materials based on the Ti3AlC2 MAX-phase on titanium / A. D. Prokopets, A. S. Konstantinov, A. P. Chizhikov [et al.] // Inorg. Mater. ― 2020. ― Vol. 56, № 10. ― P. 1087‒1091. DOI: 10.1134/S002016852010012X. Прокопец, А. Д. Закономерности формирования структуры градиентных композиционных материалов на основе МАХ-фазы Ti3AlC2 на титане / А. Д. Прокопец, А. С. Константинов, А. П. Чижиков // Неорганические материалы. ― 2020. ― Т. 56, № 10. ― С. 1145‒1150. https://doi.org/10.31857/S0002337X20100127.
37. Pazniak, A. Dense Ti3AlC2 based materials obtained by SHS-extrusion and compression methods / A. Pazniak, P. Bazhin, I. Shchetininc [et al.] // Ceram. Int. ― 2019. ― Vol. 45, № 2. ― P. 2020‒2027. https://doi.org/10.1016/j.ceramint.2018.10.101.
38. Bazhin, P. M. Effect of strain on the formation of a MAX phase in Ti‒Al‒C materials during self-propagating high temperature synthesis and extrusion / P. M. Bazhin, L. S. Stel’makh, A. M. Stolin // Inorg. Mater. ― 2019. ― Vol. 55, № 3. ― P. 302‒307. https://doi.org/10.1134/S0020168519030051. Бажин, П. М. Влияние степени деформации на формирование МАХ-фазы в материалах на основе Ti‒Al‒C при СВС-экструзии / П. М. Бажин, Л. С. Стельмах, А. М. Столин // Неорганические материалы. ― 2019. ― Т. 55, № 3. ― С. 330‒335. https://doi.org/10.1134/S0002337X19030059
Дополнительные файлы
Для цитирования: Константинов А.С., Чижиков А.П., Антипов М.С., Бажин П.М., Хоменко Н.Ю. Влияние высокотемпературного отжига на структуру и свойства композиционного материала на основе TiC/TiB2/Ti3SiC2. Новые огнеупоры. 2023;(8):48-53. https://doi.org/10.17073/1683-4518-2023-8-48-53
For citation: Konstantinov A.S., Chizhikov A.P., Antipov M.S., Bazhin P.M., Khomenko N.Y. Study of the effect of high-temperature annealing on the structure and properties of a composite material based on TiC/TiB2/Ti3SiC2. NOVYE OGNEUPORY (NEW REFRACTORIES). 2023;(8):48-53. (In Russ.) https://doi.org/10.17073/1683-4518-2023-8-48-53
Обратные ссылки
- Обратные ссылки не определены.