

Embedding of metal components into the structure of titanium carbonitride under ultrahigh loads of plasma-spark and explosive sintering
https://doi.org/10.17073/1683-4518-2023-2-38-56
Abstract
About the Authors
A. V. HmelovLatvia
Jinping Li
China
References
1. Yang, T. Effect of (Ni,Mo) and (W,Ti)C on the microstructure and mechanical properties of TiB2 ceramic tool materials / T. Yang, C. Huang, H. Liu, B. Zou, H. Zhu // Mat. Sci. Forum. ― 2012. ― Vol. 723. ― P. 233‒237.
2. Hmelov, A. V. Spark-plasma sintering of oxide‒non-oxide components with the addition of a TiC‒ZrC solid solution and various metal powder mixtures / A. V. Hmelov // Refract. Ind. Ceram. ― 2021. ― Vol. 61, № 5. ― P. 568‒579. Хмелёв, А. В. Плазменно-искровое спекание оксидно-безоксидных компонентов с добавкой твердого раствора TiC‒ZrC и разных смесей порошков металлов / А. В. Хмелёв // Новые огнеупоры. ― 2020. ― № 10. ― С. 27‒38.
3. Hmelov, A. V. Stimulation of spark-plasma sintering of mixtures of oxide‒non-oxide components by adding a solid solution TaB2‒NbC and through a nickel melt in mixtures of metal powders / A. V. Hmelov // Refract. Ind. Ceram. ― 2021. ― Vol. 62, № 1. ― P. 74‒88. Хмелёв, А. В. Стимулирование плазменноискрового спекания смесей оксидно-безоксидных компонентов добавкой твердого раствора TaB2‒NbC и через расплав никеля в смесях порошков металлов / А. В. Хмелёв // Новые огнеупоры. ― 2021. ― № 2. ― С. 14‒29.
4. Hmelov, A. V. Development of dense and hard materials based on oxide‒non-oxide compounds with added intermetallic components during spark plasma sintering / A. V. Hmelov // Refract. Ind. Ceram. ― 2022. ― Vol. 62, № 5. ― P. 570‒586. Хмелёв, А. В. Разработка плотных и твердых материалов на основе оксидно-безоксидных соединений с добавками интерметаллических компонентов в ходе плазменно-искрового спекания / А. В. Хмелёв // Новые огнеупоры. ― 2021. ― № 10. ― С. 26‒41.
5. Yung, D.L. Ultra high-pressure spark plasma sintered ZrC‒Mo and ZrC‒TiC composites / D.-L. Yung, M. Antonov, L. Jaworska, I. Hussainova // J. Refract. Metals hard Mater. ― 2015. ― Vol. 61, № 2. ― P. 201‒206.
6. Li, J. Energy and deformation during explosive compaction of ZrB2‒SiC ultra-high temperature ceramics / J. Li, S.-H. Meng, J.-C. Han, B.-L. Wang // Research Exchange. ― 2008. ― Vol. 5 ― P. 1‒6.
7. Krokhalev, A. V. Features of formation of solid alloys of chromium carbide and titanium powder mixtures by explosion energy / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // J. Non-ferrous metals. ― 2013. ― Vol. 54, № 6. ― P. 522‒526.
8. Pervukhin, L. B. Explosive compaction of ceramic powders / L. B. Pervukhin, M. I. Alymov, I. V. Saikov, R. D. Kapustin // Let. Mat. ― 2015. ― Vol. 5, № 1. ― P. 57‒60.
9. Vorozhtsov, A. Structural and mechanical properties of aluminium-based composites processed by explosive compaction / A. Vorozhtsov, I. Zukov, V. Promakhov // Powder Techn. ― 2017. ― Vol. 313, № 1. ― P. 251‒259.
10. Krokhalev, A. V. On the possibility of obtaining hard alloys from mixtures of carbide powders and metals by explosive compacting without sintering / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // J. Non-ferrous metals. ― 2017. ― Vol. 56, № 2. ― P. 540‒546.
11. Krokhalev, A. V. Explosive compaction of chromium carbide powders with a metallic binder / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // Comb. Expl. Shock wave. ― 2019. ― Vol. 55, № 4. ― P. 491‒499.
12. Krokhalev, A. V. The effect of heating on phase composition of the Cr3C2‒Ti system hard alloys fabricated by the explosion compaction of powder mixtures / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // Mat. Sci. Forum. ― 2019. ― Vol. 945. ― P. 617‒622.
13. Krokhalev, А. V. Use of explosion energy for production consolidated metal-ceramic materials based on refractory carbides / A. V. Krokhalev, V. O. Kharlamov, E. A. Kosova, V. I. Lysak // Materials today: proceedings. ― 2020. ― Vol. 25, № 3. ― P. 451‒454.
14. Krokhalev, A. V. Chemical composition and structure of interfacial boundaries in Cr3C2‒Ti powder hard alloys after explosive compaction and subsequent heating / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // J. Non-ferrous metals. ― 2020. ― Vol. 61, № 3. ― P. 667‒674.
15. Toropov, N. A. Phase diagrams of silicate systems / N. A. Toropov, V. P. Barzakovskii, R. V. Lapin. ― Nauka, 1979. ― P. 437‒439.
16. Hu, B. Thermodynamic assessment of the Ti‒Mo‒Cr‒V quaternary system / B. Hu, J. Wang, C. Wang, Y. Du, J. Zhu // Comp. Coumpling Phase Diag. Thermochem. ― 2016. ― Vol. 55, № 2. ― P. 103‒112.
17. Vorozhtcov, V. A. Phase equilibriums in the Al2O3‒ SiO2‒ZrO2 system: Calculation and Experiment / V. A. Vorozhtcov, D. A. Yurchenko, V. I. Almjashev, V. L. Stolyarova // Glass Phys. Chem. ― 2021. ― Vol. 47, № 5. ― P. 417‒426.
18. Swamy, V. Thermodynamic modeling of the Al2O3‒ SiO2‒B2O3 system / V. Swamy, I.-H. Jung, S. A. Decterov // J. Non-Cryst. Solids. ― 2009. ― Vol. 355, № 34‒36. ― P. 1679‒1686.
19. Mao, H. Thermodynamic reassessment of the Si3N4‒ AlN‒Al2O3‒SiO2 system ‒ modeling of the SiAlON and liquid phases / H. Mao, M. Selleby // Comp. Coup. Phase Diag. Thermochem. ― 2007. ― Vol. 31, № 2. ― P. 269‒280.
20. Yanrui, L. Reaction synthesizes of ZrN and phase diagram in the Si3N4‒ZrO2‒La2O3 system / L. Yanrui, L. Youjun, L. Yong, Y. Zhenxia, H. Zhenkun // J. Inorg. Mat. ― 2020. ― Vol. 35, № 7. ― P. 822‒826.
21. Yang, W. W. Fabrication of silicon nitride ceramics with various sintering aids / W. W. Yang, M. Inada, Y. Tanaka, N. Enomoto, J. Hojo // Int. J. Nanotech. ― 2013. ― Vol. 10, № 1/2. ― P. 119‒125.
22. Ewais, E. M. M. Investigation of the effect of ZrO2 and ZrO2/Al2O3 additions on the hot-pressing and properties of equimolecular mixtures of αand β-Si3N4 / E. M. M. Ewais, M. A. Attia, A. B. Hegazy, R. K. Bordia // Ceram. Inter. ― 2010. ― Vol. 36, № 4. ― P. 1327‒1338.
23. Gangireddy, S. Liquid oxide flow during oxidation of zirconium diboride-silicon carbide ultra high temperature ceramics / S. Gangireddy, S. N. Karlsdottir, J. W. Halloran // Eng. Mat. ― 2010. ― Vol. 434/435. ― P. 144‒148.
24. He, Z. Study of cubic carbide systems with Cr / Z. He // Thesis in Eng. Mat. Sci. ― 2015. ― P. 1‒53.
25. Enomoto, M. The Ti‒V‒C system (titanium‒vanadium‒ carbon) / M. Enomoto // J. Phase Equilib. ― 1999. ― Vol. 17, № 3. ― P. 237‒247.
26. Enomoto, M. The Ti‒V‒N system (titanium‒vanadium‒ nitrogen) / M. Enomoto // J. Phase Equilib. ― 1996. ― Vol. 17, № 3. ― P. 248‒252.
27. Kislitsin, S. Steel surface TiCrN, TiMoN coatings structural phase state change features after low-energy alpha particles irradiation / S. Kislitsin, A. Potekaev, V. Uglov, A. Klopotov // Int. Conf. Modern Techn. Nondestruct. Testing. ― 2018. ― Vol. 289. ― P. 1‒6.
28. Sekido, N. Solidification pathways and phase equilibria in the Mo‒Ti‒C ternary systems / N. Sekido, K. Yoshimi // J. High Temp. Mat. Proc. ― 2020. ― Vol. 39. ― P. 164‒170.
29. Sokolov, G. Effect of the ratio of chromium, molybdenium and carbon on structure and properties of deposited metal in the Mo‒Cr‒C system / G. Sokolov // J. Inter. Mat. ― 2009. ― Vol. 15, № 4. ― P. 309‒311.
30. Bratberg J. A thermodynamic analysis of the Mo‒V and Mo‒V‒C system / J. Bratberg // Calphad. ― 2002. ― Vol. 26, № 3. ― P. 459‒476.
31. Enomoto M. The Mo‒V‒N system (molybdenium‒ vanadium‒nitrogen) / M. Enomoto // J. Phase Equilib. ― 1997. ― Vol. 19, № 1. ― P. 242‒248.
32. Seifert, H. J. Phase equilibria in the Si‒B‒C‒N system / H. J. Seifert, F. Aldinger // High-performance non-oxide ceramics. ― 2021. ― Vol. 101. ― P. 1‒58.
Supplementary files
For citation: Hmelov A.V., Li J. Embedding of metal components into the structure of titanium carbonitride under ultrahigh loads of plasma-spark and explosive sintering. NOVYE OGNEUPORY (NEW REFRACTORIES). 2023;(2):38-56. https://doi.org/10.17073/1683-4518-2023-2-38-56
Refbacks
- There are currently no refbacks.