Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Встраивание металлических компонентов в структуру карбонитрида титана при сверхвысоких нагрузках плазменно-искрового и взрывного спекания


https://doi.org/10.17073/1683-4518-2023-2-38-56

Полный текст:




Аннотация

Показано влияние сверхвысоких нагрузок прессования смесей керамических и металлических порошков в ходе плазменно-искрового спекания при нагрузке прессования 1,8 ГПа при 1850 oC, а также взрывного спекания с давлением сжатия 1,56 и 2,12 ГПа при 1080 и 1150 oC соответственно на фазовый состав, микроструктуру, размеры зерен кристаллических фаз, относительную плотность, линейную усадку, микроструктурные особенности пограничных слоев, траектории микротрещин физико-механические свойства образцов муллит‒(Ti,Cr,V,Mo)(C,N)‒c-ZrO2‒β-Si3N4c-BN‒Mo‒V‒Cr и муллит‒(Ti,Cr,V,Mo)(C,N)‒β-Si3N4 ‒B4C‒Mo‒V‒Cr. Синтезированные порошки Ti(C0,7N0,3), β-Si3N4, B4C, h-BN характеризуются разной интенсивностью кристаллизации фаз Ti(C0,7N0,3), β-Si3N4, B4C, h-BN соответственно. Спеченный плазменно-искровым способом c-ZrO2 при 1400 oC показывает развитую кристаллизацию фазы c-ZrO2, кристаллическую, однородную и плотную микроструктуру. Спеченные плазменно-искровым методом образцы при сверхвысокой нагрузке прессования 1,8 ГПа показывают развитую муллитизацию, кристаллизацию фаз (Ti,Cr,V,Mo)(C,N), β-SiAlON, c-ZrO2, γ-Si3N4, c-C3N4, более кристаллические, однородные и плотно спекшиеся микроструктуры, разнодисперсные зерна кристаллических фаз при 1850 oC в отличие от образцов, полученных взрывным спеканием. Спеченные разными методами образцы различаются однородностью, плотностью, траекторией, шириной пограничных слоев керамических фаз и продвигающихся микротрещин через эти пограничные слои. Образцы, полученные двумя методами спекания при разных нагрузке прессования/давлении сжатия и температуре, показывают разную трещиностойкость и значения физико-механических свойств.


Об авторах

А. В. Хмелёв
Рижский технический университет, Институт силикатных материалов
Латвия
г. Рига


Цзиньпин Ли
Технологический институт Харбина, центр композиционных материалов
Китай
г. Харбин


Список литературы

1. Yang, T. Effect of (Ni,Mo) and (W,Ti)C on the microstructure and mechanical properties of TiB2 ceramic tool materials / T. Yang, C. Huang, H. Liu, B. Zou, H. Zhu // Mat. Sci. Forum. ― 2012. ― Vol. 723. ― P. 233‒237.

2. Hmelov, A. V. Spark-plasma sintering of oxide‒non-oxide components with the addition of a TiC‒ZrC solid solution and various metal powder mixtures / A. V. Hmelov // Refract. Ind. Ceram. ― 2021. ― Vol. 61, № 5. ― P. 568‒579. Хмелёв, А. В. Плазменно-искровое спекание оксидно-безоксидных компонентов с добавкой твердого раствора TiC‒ZrC и разных смесей порошков металлов / А. В. Хмелёв // Новые огнеупоры. ― 2020. ― № 10. ― С. 27‒38.

3. Hmelov, A. V. Stimulation of spark-plasma sintering of mixtures of oxide‒non-oxide components by adding a solid solution TaB2‒NbC and through a nickel melt in mixtures of metal powders / A. V. Hmelov // Refract. Ind. Ceram. ― 2021. ― Vol. 62, № 1. ― P. 74‒88. Хмелёв, А. В. Стимулирование плазменноискрового спекания смесей оксидно-безоксидных компонентов добавкой твердого раствора TaB2‒NbC и через расплав никеля в смесях порошков металлов / А. В. Хмелёв // Новые огнеупоры. ― 2021. ― № 2. ― С. 14‒29.

4. Hmelov, A. V. Development of dense and hard materials based on oxide‒non-oxide compounds with added intermetallic components during spark plasma sintering / A. V. Hmelov // Refract. Ind. Ceram. ― 2022. ― Vol. 62, № 5. ― P. 570‒586. Хмелёв, А. В. Разработка плотных и твердых материалов на основе оксидно-безоксидных соединений с добавками интерметаллических компонентов в ходе плазменно-искрового спекания / А. В. Хмелёв // Новые огнеупоры. ― 2021. ― № 10. ― С. 26‒41.

5. Yung, D.L. Ultra high-pressure spark plasma sintered ZrC‒Mo and ZrC‒TiC composites / D.-L. Yung, M. Antonov, L. Jaworska, I. Hussainova // J. Refract. Metals hard Mater. ― 2015. ― Vol. 61, № 2. ― P. 201‒206.

6. Li, J. Energy and deformation during explosive compaction of ZrB2‒SiC ultra-high temperature ceramics / J. Li, S.-H. Meng, J.-C. Han, B.-L. Wang // Research Exchange. ― 2008. ― Vol. 5 ― P. 1‒6.

7. Krokhalev, A. V. Features of formation of solid alloys of chromium carbide and titanium powder mixtures by explosion energy / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // J. Non-ferrous metals. ― 2013. ― Vol. 54, № 6. ― P. 522‒526.

8. Pervukhin, L. B. Explosive compaction of ceramic powders / L. B. Pervukhin, M. I. Alymov, I. V. Saikov, R. D. Kapustin // Let. Mat. ― 2015. ― Vol. 5, № 1. ― P. 57‒60.

9. Vorozhtsov, A. Structural and mechanical properties of aluminium-based composites processed by explosive compaction / A. Vorozhtsov, I. Zukov, V. Promakhov // Powder Techn. ― 2017. ― Vol. 313, № 1. ― P. 251‒259.

10. Krokhalev, A. V. On the possibility of obtaining hard alloys from mixtures of carbide powders and metals by explosive compacting without sintering / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // J. Non-ferrous metals. ― 2017. ― Vol. 56, № 2. ― P. 540‒546.

11. Krokhalev, A. V. Explosive compaction of chromium carbide powders with a metallic binder / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // Comb. Expl. Shock wave. ― 2019. ― Vol. 55, № 4. ― P. 491‒499.

12. Krokhalev, A. V. The effect of heating on phase composition of the Cr3C2‒Ti system hard alloys fabricated by the explosion compaction of powder mixtures / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // Mat. Sci. Forum. ― 2019. ― Vol. 945. ― P. 617‒622.

13. Krokhalev, А. V. Use of explosion energy for production consolidated metal-ceramic materials based on refractory carbides / A. V. Krokhalev, V. O. Kharlamov, E. A. Kosova, V. I. Lysak // Materials today: proceedings. ― 2020. ― Vol. 25, № 3. ― P. 451‒454.

14. Krokhalev, A. V. Chemical composition and structure of interfacial boundaries in Cr3C2‒Ti powder hard alloys after explosive compaction and subsequent heating / A. V. Krokhalev, V. O. Kharlamov, V. I. Lysak // J. Non-ferrous metals. ― 2020. ― Vol. 61, № 3. ― P. 667‒674.

15. Toropov, N. A. Phase diagrams of silicate systems / N. A. Toropov, V. P. Barzakovskii, R. V. Lapin. ― Nauka, 1979. ― P. 437‒439.

16. Hu, B. Thermodynamic assessment of the Ti‒Mo‒Cr‒V quaternary system / B. Hu, J. Wang, C. Wang, Y. Du, J. Zhu // Comp. Coumpling Phase Diag. Thermochem. ― 2016. ― Vol. 55, № 2. ― P. 103‒112.

17. Vorozhtcov, V. A. Phase equilibriums in the Al2O3‒ SiO2‒ZrO2 system: Calculation and Experiment / V. A. Vorozhtcov, D. A. Yurchenko, V. I. Almjashev, V. L. Stolyarova // Glass Phys. Chem. ― 2021. ― Vol. 47, № 5. ― P. 417‒426.

18. Swamy, V. Thermodynamic modeling of the Al2O3‒ SiO2‒B2O3 system / V. Swamy, I.-H. Jung, S. A. Decterov // J. Non-Cryst. Solids. ― 2009. ― Vol. 355, № 34‒36. ― P. 1679‒1686.

19. Mao, H. Thermodynamic reassessment of the Si3N4‒ AlN‒Al2O3‒SiO2 system ‒ modeling of the SiAlON and liquid phases / H. Mao, M. Selleby // Comp. Coup. Phase Diag. Thermochem. ― 2007. ― Vol. 31, № 2. ― P. 269‒280.

20. Yanrui, L. Reaction synthesizes of ZrN and phase diagram in the Si3N4‒ZrO2‒La2O3 system / L. Yanrui, L. Youjun, L. Yong, Y. Zhenxia, H. Zhenkun // J. Inorg. Mat. ― 2020. ― Vol. 35, № 7. ― P. 822‒826.

21. Yang, W. W. Fabrication of silicon nitride ceramics with various sintering aids / W. W. Yang, M. Inada, Y. Tanaka, N. Enomoto, J. Hojo // Int. J. Nanotech. ― 2013. ― Vol. 10, № 1/2. ― P. 119‒125.

22. Ewais, E. M. M. Investigation of the effect of ZrO2 and ZrO2/Al2O3 additions on the hot-pressing and properties of equimolecular mixtures of αand β-Si3N4 / E. M. M. Ewais, M. A. Attia, A. B. Hegazy, R. K. Bordia // Ceram. Inter. ― 2010. ― Vol. 36, № 4. ― P. 1327‒1338.

23. Gangireddy, S. Liquid oxide flow during oxidation of zirconium diboride-silicon carbide ultra high temperature ceramics / S. Gangireddy, S. N. Karlsdottir, J. W. Halloran // Eng. Mat. ― 2010. ― Vol. 434/435. ― P. 144‒148.

24. He, Z. Study of cubic carbide systems with Cr / Z. He // Thesis in Eng. Mat. Sci. ― 2015. ― P. 1‒53.

25. Enomoto, M. The Ti‒V‒C system (titanium‒vanadium‒ carbon) / M. Enomoto // J. Phase Equilib. ― 1999. ― Vol. 17, № 3. ― P. 237‒247.

26. Enomoto, M. The Ti‒V‒N system (titanium‒vanadium‒ nitrogen) / M. Enomoto // J. Phase Equilib. ― 1996. ― Vol. 17, № 3. ― P. 248‒252.

27. Kislitsin, S. Steel surface TiCrN, TiMoN coatings structural phase state change features after low-energy alpha particles irradiation / S. Kislitsin, A. Potekaev, V. Uglov, A. Klopotov // Int. Conf. Modern Techn. Nondestruct. Testing. ― 2018. ― Vol. 289. ― P. 1‒6.

28. Sekido, N. Solidification pathways and phase equilibria in the Mo‒Ti‒C ternary systems / N. Sekido, K. Yoshimi // J. High Temp. Mat. Proc. ― 2020. ― Vol. 39. ― P. 164‒170.

29. Sokolov, G. Effect of the ratio of chromium, molybdenium and carbon on structure and properties of deposited metal in the Mo‒Cr‒C system / G. Sokolov // J. Inter. Mat. ― 2009. ― Vol. 15, № 4. ― P. 309‒311.

30. Bratberg J. A thermodynamic analysis of the Mo‒V and Mo‒V‒C system / J. Bratberg // Calphad. ― 2002. ― Vol. 26, № 3. ― P. 459‒476.

31. Enomoto M. The Mo‒V‒N system (molybdenium‒ vanadium‒nitrogen) / M. Enomoto // J. Phase Equilib. ― 1997. ― Vol. 19, № 1. ― P. 242‒248.

32. Seifert, H. J. Phase equilibria in the Si‒B‒C‒N system / H. J. Seifert, F. Aldinger // High-performance non-oxide ceramics. ― 2021. ― Vol. 101. ― P. 1‒58.


Дополнительные файлы

Для цитирования: Хмелёв А.В., Ли Ц. Встраивание металлических компонентов в структуру карбонитрида титана при сверхвысоких нагрузках плазменно-искрового и взрывного спекания. Новые огнеупоры. 2023;(2):38-56. https://doi.org/10.17073/1683-4518-2023-2-38-56

For citation: Hmelov A.V., Li J. Embedding of metal components into the structure of titanium carbonitride under ultrahigh loads of plasma-spark and explosive sintering. NOVYE OGNEUPORY (NEW REFRACTORIES). 2023;(2):38-56. (In Russ.) https://doi.org/10.17073/1683-4518-2023-2-38-56

Просмотров: 141

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 1683-4518 (Print)