Open Access Open Access  Restricted Access Subscription Access

Numerical calculation of the boundaries of vortex zones at the entrance to round suction tubes with three shelves


https://doi.org/10.17073/1683-4518-2022-12-58-63

Full Text:




Abstract

The article proposes to reduce the size of the vortex zones (VZ) formed when the flow is separated from the sharp edges, due to the formation of three fractures of the round suction socket. The lengths of the first and third bell shelves in the range of 0,1‒0,5 caliber (the radius of the suction pipe) correspond to the angles of their inclination, at which the lengths of the vortex zones are equal to the lengths of these shelves. Calculations were performed for the angles of inclination of the second shelf of the bell 30, 60 and 90 with lengths from 1, 2 and 5 calibers. The boundaries of vortex zones for the specified sizes are found, analytical dependences for their determination are proposed. Profiling according to these boundaries will eliminate the formation of vortices and reduce the coefficient of local resistance at the entrance to the bell.

About the Authors

O. A. Averkova
ФГБОУ ВО «Белгородский государственный технологический университет имени В. Г. Шухова»
Russian Federation


K. I. Logachev
ФГБОУ ВО «Белгородский государственный технологический университет имени В. Г. Шухова»
Russian Federation


T. A. Kozlov
ФГБОУ ВО «Белгородский государственный технологический университет имени В. Г. Шухова»
Russian Federation


E. N. Popov
ФГБОУ ВО «Белгородский государственный технологический университет имени В. Г. Шухова»
Russian Federation


V. G. Dmitrienko
ФГБОУ ВО «Белгородский государственный технологический университет имени В. Г. Шухова»
Russian Federation


References

1. Huang, Y. Performance of constant exhaust ventilation for removal of transient high-temperature contaminated airflows and ventilation-performance comparison between two local exhaust hoods / Yanqiu Huang, Yi Wang, Li Liu [et al.] // Energy and Buildings. ― 2017. ― Vol. 154. ― P. 207―216. DOI: 10.1016/j.enbuild.2017.08.061.

2. Vekteris, V. Investigation of the efficiency of the lateral exhaust hood enhanced by aeroacoustic air flow / V. Vekteris, I. Tetsman, V. Mokshin // Process Saf. Environ. Prot. ― 2017. ― Vol. 109. ― P. 224‒232. DOI: 10.1016/j.psep.2017.04.004.

3. Jeong, S. A study on the improvement of ventilation rate using air-flow inducing local exhaust ventilation system / S. Jeong, S. H. Kwon, S. Ahn [et al.] // Journal of Asian Architecture and Building Engineering. ― 2016. ― Vol. 15 (1). ― P. 119‒126. DOI: http://doi.org/10.3130/jaabe.15.119.

4. Huang, Y. Reduced-scale experimental investigation on ventilation performance of a local exhaust hood in an industrial plant / Y. Huang, Y. Wang, L. Liu [et al.] // Build. Environ. ―2015. ― Vol. 85. ― P. 94‒103. DOI: 10.1016/j.buildenv.2014.11.038.

5. Flynn, M. R. Local exhaust ventilation for the control of welding fumes in the construction industry ― a literature review / M. R. Flynn // Ann. Occup. Hyg. ― 2012. ― Vol. 56, № 7. ― P. 764‒776. DOI: 10.1093/annhyg/mes018.

6. Shepherd, S. Reducing silica and dust exposures in construction during use of powered concretecutting hand tools: efficacy of local exhaust ventilation on hammer drills / S. Shephred, S. R. Woskie, C. Holcroft, M. Ellenbecker // Journal of Occupational and Environmental hygiene. ― 2009. ― № 6 (1). ― P. 42‒51. DOI: 10.1080/15459620802561471.

7. Ojimai, J. Efficiency of a tool-mounted local exhaust ventilation system for controlling dust exposure during metal grinding operations / J. Ojimai // Ind. Health. ― 2007. ― Vol. 45 (6). ― P. 817‒819. DOI: 10.2486/indhealth.45.817.

8. Gonzalez, E. Influence of exhaust hood geometry on the capture efficiency of lateral exhaust and pushpull ventilation systems in surface treatment tanks / E. Gonzalez, F. Marzal, A. Minana, M. Doval // Environ. Prog. ― 2008. ― Vol. 27, № 3. ― Р. 405‒411. DOI: 10.1002/ep.10287.

9. Chern, M. J. Numerical investigation push-pull and exhaust of turbulent diffusion in fume cupboards / M. J. Chern, W. Y. Cheng // Ann. Occup. Hyg. ― 2007. ― Vol. 51(6). ― P. 517‒531. DOI: 10.1093/annhyg/mem031.

10. Lim, K. A numerical study on the characteristics of flow field, temperature and concentration distribution according to changing the shape of separation plate of kitchen hood system / K. Lim, C. Lee // Energ. Buildings. ― 2008. ― Vol. 40. ― P. 175‒184. DOI: 10.1016/j.enbuild.2007.02.028.

11. Logachev, K. I. A survey of separated airflow patterns at inlet of circular exhaust hoods / K. I. Logachev, A. M. Ziganshin, O. A. Averkova, A. K. Logachev // Energy Build. ― 2018. ― Vol. 173. ― P. 58‒70. DOI: https://doi.org/10.1016/j.enbuild.2018.05.036.

12. Pinelli, M. A numerical method for the efficient design of free opening hoods in industrial and domestic applications / M. Pinelli, A. Suman // Energy. ― 2014. ― Vol.74. ― P. 484‒493.

13. Logachev, K. I. A study of separated flows at inlets of flanged slotted hoods / K. I. Logachev, A. M. Ziganshin, O. A. Averkova // J. Build. Eng. ― 2020. ― Vol. 29. ― Article № 101159. DOI: https://doi.org/10.1016/j.jobe.2019.101159.

14. Logachev, K. I. On the resistance of a round exhaust hood, shaped by outlines of the vortex zones occurring at its inlet / K. I. Logachev, A. M. Ziganshin, O. A. Averkova // Build. Environ. ― 2019. ― Vol. 151. ― P. 338‒347. DOI: https://doi.org/10.1016/j.buildenv.2019.01.039.

15. Зиганшин, А. М. Повышение энергоэффективности вентиляционного фасонного элемента в виде внезапного расширения / А. М. Зиганшин, Т. А. Наумов // Изв. вузов. Строительство. ― 2019. ― № 6. ― С. 53‒65.

16. Зиганшин, А. М. Численное определение характеристик течения через последнее боковое отверстие в воздуховоде / А. М. Зиганшин, К. Э. Батрова, Г. А. Гимадиева // Изв. вузов. Строительство. ― 2018. ― № 7. ― С. 53‒65.

17. Зиганшин, А. М. Численное моделирование течения в профилированном вентиляционном тройнике на слияние / А. М. Зиганшин, Л. Н. Бадыкова // Изв. вузов. Строительство. ― 2017. ― № 6. ― С. 41‒48.

18. Logachev, K. I. Experiment determining pressure loss reduction using a shaped round exhaust hood / K. I. Logachev, A. M. Ziganshin, E. N. Popov [et al.] // Building and Environment. ― 2021. ― Vol. 190. DOI: 10.1016/j.buildenv.2020.107572.

19. Лифанов, И. К. Метод сингулярных интегральных уравнений и численный эксперимент в математической физике, аэродинамике, теории упругости и дифракции волн / И. К. Лифанов. ― М. : Янус. ― 1995. ― 520 с.

20. Гоман, О. Г. Численное моделирование осесимметричных отрывных течений несжимаемой жидкости / О. Г. Гоман [и др.] ; под ред. М. И. Ништа. ― М. : Машиностроение, 1993. ― 288 с.


Supplementary files

For citation: Averkova O.A., Logachev K.I., Kozlov T.A., Popov E.N., Dmitrienko V.G. Numerical calculation of the boundaries of vortex zones at the entrance to round suction tubes with three shelves. NOVYE OGNEUPORY (NEW REFRACTORIES). 2022;1(12):58-63. https://doi.org/10.17073/1683-4518-2022-12-58-63

Views: 241

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)