Open Access Open Access  Restricted Access Subscription Access

Refractory foam concrete for nuclear power


https://doi.org/10.17073/1683-4518-2023-1-38-45

Full Text:




Abstract

The composition of refractory foam concrete for long-term use at high temperatures in the nuclear power industry has been developed. Foam concrete based on Portland cement has an average density class of D700 and a maximum permissible application temperature class of I5 (500 °C). It is shown that Refractory foam concrete has improved deformation characteristics in terms of axial tension and flexural tensile strength. Changes in the strength of refractory foam concrete with an increase in the heating temperature of samples up to 400 °C, as well as its strength during prolonged exposure (up to 2000 h) at 200 and 400 °C. are presented. A thermodynamic calculation is given with the possible formation of low-base hydrosilicates (gyrolite and afwellite) up to 400 °C, which is confirmed by the results of studies of the phase composition of samples of refractory foam concrete. Ill. 8. Ref. 23. Tab. 5.


About the Authors

A. M. Sycheva
Военно-космическая академия имени А. Ф. Можайского
Russian Federation


S. S. Ruabova
Военно-космическая академия имени А. Ф. Можайского
Russian Federation


S. Yu. Pirogov
Военно-космическая академия имени А. Ф. Можайского
Russian Federation


S. I. Pyzhov
Военно-космическая академия имени А. Ф. Можайского
Russian Federation


References

1. Береговой, В. А. Жаростойкие пенобетоны : моногр. / В. А. Береговой [и др.]. ― Пенза: ПГУАС, 2007. ― 112 с.

2. Масленникова, М. Г. Легкие жаростойкие бетоны / М. Г. Масленникова // Исследования в области жаростойкого бетона. ― М. : Стройиздат, 1981. ― С. 64‒73.

3. Горни, В. М. Легкий жаростойкий бетон ячеистой структуры / В. М. Горин, В. Ю. Сухов [и др.] // Строительные материалы. ― 2003. ― № 8. ― С. 17‒19.

4. Некрасов, К. Д. Легкие жаростойкие бетоны на пористых заполнителях / К. Д. Некрасов, М. Г. Масленикова. ― М. : Стройиздат, 1982. ― 152 с.

5. Некрасов, К. Д. Жаростойкий бетон на портландцементе / К. Д. Некрасов, А. П. Тарасова. ― М. : Стройиздат, 1969. ― 192 с.

6. Некрасов, К. Д. Жароупорный бетон / К. Д. Некрасов. ― М. : Промстройиздат, 1957. ― 284 с.

7. Бархатов, В. И. Отходы производств и потребления — резерв строительных материалов : монография / В. И. Бархатов, И. П. Добровольский, Ю. Ш. Капкаев. ― Челябинск : Изд-во Челяб. гос. ун-та, 2017. ― 477 с.

8. Abyzov, V. A. Refractory сellular сoncrete based on phosphate binder from waste of production and recycling of aluminum / V. A. Abyzov // Procedia Engineering. ― 2017. ― Vol. 206. ― P. 783‒789. https://www.sciencedirect.com/science/article/pii/S1877705817352360.

9. Mugahed Amran, Y. H. Properties and applications of foamed concrete: a review / Y. H. Mugahed Amran, Nima Farzadnia, A. A. Abang Ali // Construction and Building Materials. ― 2015. ― Vol. 101, part 1. ― P. 990‒1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112.

10. Othuman, Md Azree. Elevated-temperature thermal properties of lightweight foamed concrete / Md Azree Othuman, Y. C. Wang // Construction and Building Materials. ― 2011. ― Vol. 25, issue 2. ― P. 705‒716. https://doi.org/10.1016/j.conbuildmat.2010.07.016.

11. Martínez-Martínez, J. E. Assessment of lightweight concrete thermal properties at elevated temperatures / J. E. Martínez-Martínez, F. P. Álvarez Rabanal, M. Lázaro [et al.] // Appl. Sci. ― 2021. ― № 11. ― 10023. https://doi.org/10.3390/app112110023.

12. Adnan, A. Thermal behaviour of novel lightweight concrete at ambient and elevated temperatures: experimental, modelling and parametric studies / A. Adnan, R. Edwards // Construction and Building Materials. ― 2012. ― Vol. 31. ― P. 174‒187. https://doi.org/10.1016/j.conbuildmat.2011.12.096.

13. Sureshbabu, N. Influence of temperature on bond– slip characteristics of concrete containing fly ash / G. Mathew, N. Sureshbabu // J. Civ Eng. ― 2020. ― № 21. ― P. 1013–1023. https://doi.org/10.1007/s42107-020-00258-8.

14. Zhang, Y. New insights into the mechanism governing the elasticity of calcium silicate hydrate gels exposed to high temperature: a molecular dynamics study / Y. Zhang, Q. Zhou, J. Woody Ju, M. Bauchy // Cement and Concrete Research. ― 2021. ― Vol. 141. ― Article № 106333. https://doi.org/10.1016/j.cemconres.2020.106333.

15. Zadeh, V. Z. Nanoscale mechanical properties of concrete containing blast furnace slag and fly ash before and after thermal damage / V. Z. Zadeh, C. P. Bobko // Cement and Concrete Composites. ― 2013. ― Vol. 37. ― P. 215‒221. https://doi.org/10.1016/j.cemconcomp.2012.09.003.

16. Sedaghatdoost, A. Investigation on the mechanical properties and microstructure of eco-friendly mortar containing WGP at elevated temperature / А. Sedaghatdoost, К. Behfarnia, Н. Moosaei [et al.] // Int. J. Concr. Struct. Mater. ― 2021. ― № 15. ― Аrticle № 1. https://doi.org/10.1186/s40069-020-00434-9.

17. Sycheva, A. Refractory foam concrete for Civil Projects. In: Manakov A., Edigarian A. (eds). International scientific siberian transport forum TransSiberia-2021. TransSiberia 2021 / A. Sycheva, S. Ryabova, A. Solomakhin [et al.] // Lecture Notes in Networks and Systems. ― 2022. ― Vol. 403. ― Springer, Cham. https://doi.org/10.1007/978-3-030-96383-5_114.

18. Awoyera, P. Fire resistance and thermal insulation properties of foamed concrete incorporating pulverized ceramics and mineral admixtures / P. Awoyera, E. Onoja, A. Adesina // Asian J. Civ. Eng. ― 2020. ― № 21. ― P. 147‒156. https://doi.org/10.1007/s42107-019-00203-4.

19. Othuman, Md Azree. Elevated-temperature thermal properties of lightweight foamed concrete / Md Azree Othuman, Y. C. Wang // Construction and Building Materials. ― 2011. ― Vol. 25, issue 2. ― P. 705‒716. https://doi.org/10.1016/j.conbuildmat.2010.07.016.

20. Aydın, S. Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars / S. Aydın, B. Baradan // Cement and Concrete Research. ― 2007. ― Vol. 37, issue 6. ― P. 988‒999. https://doi.org/10.1016/j.cemconres.2007.02.005.

21. Beth Cox, S. Processing and material characterization of continuous basalt fiber reinforced ceramic matrix composites using polymer derived ceramics: a thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science Orlando, Florida, 2014.

22. Венюа, М. Цементы и бетоны в строительстве / М. Венюа ; под. ред. Б. А. Крыдова ; пер. с франц. Ф. М. Иванова, Д. В. Свенцицкого. ― М. : Стройиздат, 1980. ― 415 с.

23. Бабушкин, В. И. Термодинамика силикатов / В. И. Бабушкин, Г. М. Матвеев, О. П. Мчедлов-Петросян. ― М. : Изд-во лит-ры по стр-ву, архитектуре и строительным материалам, 1972. ― 351 с.


Supplementary files

For citation: Sycheva A.M., Ruabova S.S., Pirogov S.Y., Pyzhov S.I. Refractory foam concrete for nuclear power. NOVYE OGNEUPORY (NEW REFRACTORIES). 2023;(1):38-45. https://doi.org/10.17073/1683-4518-2023-1-38-45

Views: 265

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)