Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

ИСКРОВОЕ ПЛАЗМЕННОЕ СПЕКАНИЕ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ЦИРКОНАТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ


https://doi.org/10.17073/1683-4518-2022-12-35-40

Полный текст:




Аннотация

Методом обратного химического осаждения синтезированы порошки цирконатов РЗЭ, La2Zr2O7 и ZrO2‒8Y2O3 для получения на их основе керамических материалов искровым плазменным спеканием. Изучено формирование фазового состава керамики при консолидации методом искрового плазменного спекания. Теплопроводность керамики на основе цирконатов РЗЭ при 400 °С составляет 1,79 Вт/(м·К), что ниже, чем у керамики La2Zr2O7 и ZrO2‒8Y2O3 (2,06 и 2,4 Вт/(м·К) соответственно). Показано, что применение концентрата оксидов РЗЭ перспективно для получения керамического слоя теплозащитных покрытий, обладающих термической стабильностью при температурах выше 1200 °С.


Об авторах

С. А. Оглезнева
ФГАОУ ВО «Пермский национальный исследовательский политехнический университет»
Россия

Д. т. н. 

Пермь




С. Е. Порозова
ФГАОУ ВО «Пермский национальный исследовательский политехнический университет»
Россия

д. т. н.

Пермь



М. Н. Каченюк
ФГАОУ ВО «Пермский национальный исследовательский политехнический университет»
Россия

к. т. н.

Пермь



В. Б. Кульметьева
ФГАОУ ВО «Пермский национальный исследовательский политехнический университет»
Россия

к. т. н. 

Пермь

 



А. А. Сметкин
ФГАОУ ВО «Пермский национальный исследовательский политехнический университет»
Россия

к. т. н.

Пермь




Список литературы

1. Каблов, Е. Н.Теплозащитные покрытия для лопаток турбины высокого давления перспективных ГТД / Е. Н. Каблов, С. А. Мубояджян // Металлы. ― 2012. ― № 1. ― С. 5‒13.

2. Clarke, D. R. Thermal-barrier coatings for more efficient gas-turbine engines / D. R. Clarke, M. Oechsner, N. P. Padtur // MRS BULLETIN. ― 2012. ― Vol. 37, № 10. ― Р. 891‒898. https://doi.org/10.1557/mrs.2012.232.

3. Панков, В. П. Теплозащитные покрытия лопаток турбин авиационных газотурбинных двигателей / В. П. Панков, А. Л. Бабаян, М. В. Куликов [и др.] // Ползуновский вестник.― 2021.― № 1.― С. 161‒172. https://ojs.altstu.ru/index.php/PolzVest/article/view/31.

4. Кашин, Д. С. Современные теплозащитные покрытия, полученные методом электронно-лучевого напыления (обзор) / Д. С. Кашин, П. А. Стехов // Труды ВИАМ : электрон. науч.-техн. журн. ― 2018. ― № 2 (62). ― С. 84‒90. URL: http://www.viam-works.ru (дата обращения: 10.09.2022).

5. Чубаров, Д. А. Магнетронный способ нанесения керамических слоев теплозащитных покрытий / Д. А. Чубаров, С. А. Будиновский, А. А. Смирнов // Авиационные материалы и технологии. ― 2016. ― № 4 (45). ― С. 23‒30. https://doi.org/10.18577/2107-9140-2016-0-4-23-30.

6. Sampath, S. Processing science of advanced thermalbarrier systems / S. Sampath, U. Schulz, M. O. Jarligo, S. Kuroda // MRS BULLETIN. ― 2012. ― Vol. 37, № 10. ― Р. 903‒910. https://doi.org/10.1557/mrs.2012.233.

7. Минько, Д. В. Теория и практика получения функционально-градиентных материалов импульсными электрофизическими методами / Д. В. Минько, К. Е. Белявин, В. К. Шелег. ― Минск : БНТУ, 2020. ― 450 с.

8. Pakseresht, A. H. Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: microstructural development and hot corrosion behavior / A. H. Pakseresht, A. H. Javadi, M. Bahrami [et al.] // Ceram. Int. ― 2016. ― Vol. 42, № 2. ― Р. 2770–2779. https://doi.org/10.1016/j.ceramint.2015.11.008.

9. Boidot, M.Proto-TGO formation in TBC systems fabricated by spark plasma sintering /M. Boidot, S. Selezneff, D. Monceau [et al.] // Surf. Coat. Technol. ― 2010. ― Vol. 205, № 5. ― P. 1245‒1249. https://doi.org/10.1016/j.surfcoat.2010.09.042.

10. Vaßen, R. Overview on advanced thermal barrier coatings / R. Vaßen, M. O. Jarligo, T. Steinke [et al.] // Surf. Coat. Technol. ― 2010. ― Vol. 205, № 4. ― P. 938–942. https://doi.org/10.1016/j.surfcoat.2010.08.151.

11. Kumar, V. Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications / V. Kumar, B. Kandasubramanian // Particuology. ― 2016. ― Vol. 27.― P. 1–28. https://doi.org/10.1016/j.partic.2016.01.007.

12. Zhang, J. Lanthanum zirconate based thermal barrier coatings: a review / J. Zhang, X. Guo, Y.-G. Jung [et al.] // Surf. Coat. Technol. ― 2017. ― Vol. 323. ― Р. 18‒29. https://doi.org/10.1016/j.surfcoat.2016.10.019.

13. Pan, W. Low thermal conductivity oxides / W. Pan, Simon P. R., C. Wan [et al.] // MRS BULLETIN. ― 2012. ― Vol. 37, № 10. ― Р. 917‒922. https://doi.org/10.1557/mrs.2012.234.

14. Cao, X. Application of rare farths in thermal barrier coating materials / X. Cao // J. Mater. Sci. Technol. ― 2007. ― Vol. 23, № 1. ― Р. 15‒35.

15. Mazilin, I. V. Composition and structure of coatings based on rare-earth zirconates / I. V. Mazilin, L. K. Baldaev, D. V. Drobot [et al.] // Inorg. Mater. ― 2016. ― Vol. 52, № 8. ― P. 939–944. https://doi.org/10.1134/S0020168516090119.

16. Bansal, N. P. Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings / N. P. Bansal, D. Zhu // Mater. Sci. Eng., A. ― 2007. ― Vol. 459, № 1/2. ― P. 192‒195. https://doi.org/10.1016/j.msea.2007.01.069.

17. Zhou, H. Effect of rare earth doping on thermophysical properties of lanthanum zirconate ceramic for thermal barrier coatings / H. Zhou, D. Yi // J. Rare Earths. ― 2008. ― Vol. 26, № 6. ― P. 770‒774. https://doi.org/10.1016/S1002-0721(09)60002-8.

18. Zhang, R. M. J. Review of high entropy ceramics: design, synthesis, structure and properties / R. M. J. Zhang, M. J. Reece // J. Mater. Chem., A. ― 2019. ― Vol. 7 (39). ― P. 22148‒22162. https://doi.org/10.1039/c9ta05698j.

19. Zhao, Z. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate / Z. Zhao, H. Xiang, F.-Z. Dai [et al.] // J. Mater. Sci. Technol. ― 2019. ― Vol. 35. ― P. 2647‒2651. https://doi.org/10.1016/j.jmst.2019.05.054.

20. Li, F. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials / F. Li, L. Zhou, J.-X. Liu [et al.] // J. Adv. Ceram. ― 2019. ― Vol. 8. ― P. 576‒582. https://doi.org/10.1007/s40145-019-0342-4.

21. Zhou, L. High-entropy thermal barrier coating of rare-earth zirconate: a case study on (La0,2Nd0,2Sm0,2Eu0,2Gd0,2)2Zr2O7 prepared by atmospheric plasma spraying / L. Zhou, F. Li, J.-X. Liu [et al.] // J. Eur. Ceram. Soc. ― 2020. ― Vol. 40. ― P. 5731‒5739. https://doi.org/10.1016/j.jeurceramsoc.2020.07.061.

22. Tu, T.-Z. Graceful behavior during CMAS corrosion of a high-entropy rare-earth zirconate for thermal barrier coating material / T.-Z. Tu, J.-X. Liu, L. Zhou [et al.] // J. Eur. Ceram. Soc.― 2022. ― Vol. 42. ― P. 649‒657. https://doi.org/10.1016/j.jeurceramsoc.2021.10.022.

23. Andrievskaya, E. R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides / E. R. Andrievskaya // J. Eur. Ceram. Soc. ― 2008. ― Vol. 28, № 12. ― P. 2363‒2388. https://doi:10.1016/j.jeurceramsoc.2008.01.009.

24. Оглезнева, С. А. Формирование в процессе искрового плазменного спекания градиентного материала Инконель 625 с внешним керамическим слоем для теплозащитных покрытий / С. А. Оглезнева, А. А. Сметкин, М. Н. Каченюк // Конструкции из композиционных материалов. ― 2020. ― Вып. 4 (160). ― С. 28‒31.

25. Wang, S. Synthesis of nanostructured La2Zr2O7 by a non-alkoxide sol-gel method : from gel to crystalline powders / S. Wang, W. Li, S. Wang, Z. Chen // J. Eur. Ceram. Soc. ― 2015. ― Vol. 35.― P. 105‒112. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.08.032.

26. Kaliyaperumal, Ch. Fluorite to pyrochlore phase transformation in nanocrystalline Nd2Zr2O7 / Ch. Kaliyaperumal, A. Sankarakumar, J. Palanisamy, T. Paramasivam // Mater. Lett. ― 2018. ― Vol. 228. ― P. 493‒496. https://doi.org/10.1016/j.matlet.2018.06.087.

27. Paul, B. Structural properties and the fluoritepyrochlore phase transition in La2Zr2O7: the role of oxygen to induce local disordered states / B. Paul, K. Singh, T. Jaroń [et al.] // J. Alloys Compd. ― 2016. ― Vol. 686. ― Р. 130‒136. http://dx.doi.org/10.1016/j.jallcom.2016.05.347.

28. Tang, X. Raman scattering and t-phase lattice vibration of 3 % (mole fraction) Y2O3‒ZrO2 / X. Tang, X. Zheng // J. Mater. Sci. Technol. ― 2004. ― Vol. 20, № 5. ― Р. 485–489.

29. Hemberger, Y. Quantification of yttria in stabilized zirconia by raman spectroscopy / Y. Hemberger, N. Wichtner, Ch. Berthold, K. G. Nickel // Int. J. Appl. Ceram. Technol. ― 2016. ― Vol. 13. ― Р. 116‒124. http://dx.doi.org/10.1111/ijac.12434.

30. Wang, Y. Synthesis and characterization of nanocrystalline La2Zr2O7 film by reactive spray deposition technology for application in thermal barrier coatings / Y. Wang, R. Kumar, J. Rollerand, R. Maric // MRS Advances. ― 2017. ― Vol. 2, № 28. ― P. 1519‒1525. https://doi.org/10.1557/adv.2017.154.

31. Guo, X. Thermal properties of La2Zr2O7 double-layer thermal barrier coatings / X. Guo, Z. Lu, H.-Y. Park [et al.] // Adv. Appl. Ceram. ― 2019. ― Vol. 118, № 3. ― P. 91–97. https://doi.org/10.1080/17436753.2018.1510820.

32. Song, D. Microstructure design for blended feedstock and its thermal durability in lanthanum zirconate based thermal barrier coatings / D. Song, U. Paik, X. Guo [et al.] // Surf. Coat. Technol. ― 2016. ― Vol. 308. ― P. 40–49. https://doi.org/10.1016/j.surfcoat.2016.07.112.


Дополнительные файлы

Для цитирования: Оглезнева С.А., Порозова С.Е., Каченюк М.Н., Кульметьева В.Б., Сметкин А.А. ИСКРОВОЕ ПЛАЗМЕННОЕ СПЕКАНИЕ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ЦИРКОНАТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ. Новые огнеупоры. 2022;1(12):35-40. https://doi.org/10.17073/1683-4518-2022-12-35-40

For citation: Oglezneva S.A., Porozova S.E., Kachenyuk M.N., Kul’met’eva V.B., Smetkin A.A. Spark plasma sintering of ceramic materials based on zirconates of rare-earth elements. NOVYE OGNEUPORY (NEW REFRACTORIES). 2022;1(12):35-40. (In Russ.) https://doi.org/10.17073/1683-4518-2022-12-35-40

Просмотров: 280

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 1683-4518 (Print)