Open Access Open Access  Restricted Access Subscription Access

Gibbs paradox as a derivative of composition entropy


https://doi.org/10.17073/1683-4518-2022-7-28-32

Full Text:




Abstract

In science, sometimes so-called «problem problems» arise, over the solution of them struggle for a long time several generations of scientists. Possessing deep knowledge and developed intuition, they sometimes predict the result of a problem, but cannot find a solution to it. Among such problems of science, one can certainly include the problem that entered physics under the name «Gibbs paradox». Gibbs predicted all the properties of the entropy of a mixture. He showed that when two different gases are mixed, the entropy of the mixture exceeds the sum of the initial entropies of the components by an amount that called the jump of entropy. What is the physical nature of this jump, he could not explain. The fact is that this jump of entropy behaves in a rather strange way. Its magnitude does not depend on the nature of gases, for a mixture of them of any arbitrary chemical composition, it has the same value. For more than a century there has been a paradox Gibbs associated with the fundamental parameter of physical systems ― entropy, and so far no one has been able to clarify this paradox or at least find out due to what reasons it is formed. Ill. 2. Ref. 8.

About the Author

E. Barsky
Академический инженерный колледж Азриэли
Israel


References

1. Хайтун, Д. История парадокса Гиббса / Д. Хайтун. ― М. : URSSR : КомКнига, 2009.

2. Kondepudi, D. Modern thermodinamiks / D. Kondepudi, I. Prigogine. ― New-York, John Willеy & Sons, 1999.

3. Chambodal, P. Evolution et applications du concept d'entropie / P. Chambodal. ― Paris : Dunog, 1963.

4. Lorentz, H. Les theories statistiques en thermodynamique / H. Lorentz. ― M. : Dinamics, 2001.

5. Ландау, Л. Статистическая физика. Т. V / Л. Ландау, Е. Лифшиц. ― М. : Физматлит, 2005.

6. Brillouin, L. Science and information theory / L. Brillouin. ― New York : Academic Press, 1962.

7. Барский, Е. Эффективность разделения сыпучего материала / Е. Барский // Теплофизика высоких температур. ― 2009. ― Т. 47, № 6.

8. Barsky, Е. Critical regimes of two-phase flows with a polidisperse solid phase / Е. Barsky. ― London, New York : Springer, 2010


Supplementary files

For citation: Barsky E. Gibbs paradox as a derivative of composition entropy. NOVYE OGNEUPORY (NEW REFRACTORIES). 2022;1(7):28-32. https://doi.org/10.17073/1683-4518-2022-7-28-32

Views: 257

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)