

Features of compaction in the combustion process of a system based on (Ni‒Al)/(SiO2, Al2O3, 3Al2O3∙2SiO2)
https://doi.org/10.17073/1683-4518-2022-10-32-37
Abstract
The possibility of using the method of self-propagating hightemperature synthesis to obtain high-temperature cermet materials and non-removable layer compounds based on (NiAl)/oxide, where the oxides are SiO2, Al2O3 and 3Al2O3·2SiO2, is investigated. The thermodynamic analysis of gorenje reactions was carried out and the properties of the synthesized products were investigated. An alternative method of creating a layered material with different content of oxide phases opens up wide possibilities for its use as heat insulators and special elements for high-temperature applications. Ill.8. Ref. 16. Tab. 1.
About the Authors
A. E. SychevRussian Federation
M. L. Busurina
Russian Federation
C. G. Vadchenko
Russian Federation
References
1. Noebe, R. Physical and mechanical properties of the B2 compound NiAl / R. Noebe, R. Bowman, M. Nathal // International Materials Reviews. ― 1993. ― Vol. 38, № 4. ― P. 193‒232. https://doi.org/10.1179/imr.1993.38.4.193.
2. Pascal, C. Combustion synthesis: a new route for repair of gas turbine components: principles and metallurgical structure in the NiAl/RBD61/superalloy junction / C. Pascal, R. M. Marin-Ayral, J. C. Tedenac, C. Merlet // Mater. Sci. Eng. A. ― 2003. ― № 341. ― P. 144‒151. https://doi.org/10.1016/S0921-5093(02)00205-8.
3. Wang, X.-H. Effect of high pressure on the solidification of Al‒Ni alloy / X.-H. Wang, D. Dong, X.-H. Yang // Crystals. ― 2021. ― № 11. ― Article № 478. https://doi.org/10.3390/cryst11050478.
4. Гостищев, В. В. Высокотемпературный синтез сложнолегированных никелидов алюминия / В. В. Гостищев, И. А. Астапов, Р. Хосен, С. Н. Химухин, А. В. Середюк // Перспективные материалы. ― 2014. ― № 12. ― С. 59‒65.
5. Arzt, E. High temperature creep behavior of oxide dispersion strengthened NiAl intermetallics / E. Arzt, P. Grahle // Acta Materialia. ― 1998. ― Vol. 46, № 8. ― P. 2717‒2727.
6. Schneider, H. Structure and properties of mullite ― a review / H. Schneider, J. Schreuer, B. Hildmann // J. Eur. Ceram. Soc. ― 2008. ― Vol. 28, № 2. ― P. 329‒344. https://doi.org/10.1016/j.jeurceramsoc.2007.03.017.
7. Chen, Y. F. Phase transformation and growth of mullite in kaolin ceramics / Y. F. Chen, M. C. Wang, M. H. Hon // J. Eur. Ceram. Soc. ― 2004. ― Vol. 24, № 8. ― P. 2389‒2397. https://doi.org/10.1016/S0955-2219(03)00631-9.
8. Kong, B. L. Some main group oxides on mullite phase formation and microstructure evolution / B. L. Kong, T. S. Zhang, J. Ma, F. Boey / J. Alloys Compd. ― 2003. ― Vol. 359, № 1/2. ― P. 292‒299. https://doi.org/10.1016/S0925- 8388(03)00193-2.
9. Nogami, M. Formation of Ni nanoparticles in Al2O3‒ SiO2 glass by reacting with hydrogen gas / M. Nogami, L. X. Hung, H. Van Tuyen, Xuan Quang Vu // J. Mater. Sci. ― 2019. ― № 44. ― P. 13883‒13891. https://doi.org/10.1007/s10853-019-03935-5.
10. Zhang, X. Properties and interface structures of Ni and Ni‒Ti alloy toughened Al2O3 ceramic composites / X. Zhang, G. Lu, M. J. Hoffmann, R. Metselaar // J. Eur. Ceram. Soc. ― 1995 ― № 15. ― P. 225‒232. https://doi.org/10.1016/0955-2219(95)93943-W.
11. Matsuura, K. Grain refinement of combustionsynthesized NiAl by addition of Al2O3 particles / K. Matsuura, T. Kitamura, M. Kudo, Y. Itoh, T. Ohmi // ISIJ International. ― 1997. ― Vol. 37, № 1. ― P. 87‒92. https://doi.org/10.2355/isijinternational.37.87.
12. Zhu, Х. Combustion synthesis of NiAl/Al2O3 composites by induction heating / X. Zhu, T. Zhang, V. Morris, D. Marchant // Intermetallics. ― 2010. ― Vol. 18, № 6. ― P. 1197‒1204. https://doi.org/10.1016/j.intermet.2010.03.009.
13. Boyarchenko, O. D. NiAl intermetallics dispersionstrengthened with silica, alumina, and mullite: synthesis and characterization / O. D. Boyarchenko, A. E. Sytschev, S. G. Vadchenko, D. Vrel // Int. J. Self-Propag. HighTemp. Synth. ― 2014. ― № 23. ― P. 83‒88. https://doi.org/10.3103/S1061386214020034.
14. Sychev, A. E. Ni‒Al‒SiO2-based cermet produced by self-propagating high-temperature synthesis / A. E. Sychev, N. A. Kochetov, I. D. Kovalev [et al.] // Glass Ceram. ― 2020. ― № 76. ― P. 474‒478. https://doi.org/10.1007/s10717-020-00225-4.
15. Boyarchenko, O. D. Structure and properties of a composite material obtained by thermal explosion in a mixture of Ni + Al + Cr2O3 / O. D. Boyarchenko, A. E. Sychev, L. M. Umarov [et al.] // Combust. Explos. Shock Waves. ― 2017. ― № 53. ― P. 41‒48. https://doi.org/10.1134/S0010508217010075.
16. Бабичев, А. П. Физические величины: справочник / А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский [и др.]; под ред. И. С. Григорьева, Е. З. Мейлихова. ― М.: Энергоатомиздат, 1991. ― 1232 с.
Supplementary files
For citation: Sychev A.E., Busurina M.L., Vadchenko C.G. Features of compaction in the combustion process of a system based on (Ni‒Al)/(SiO2, Al2O3, 3Al2O3∙2SiO2). NOVYE OGNEUPORY (NEW REFRACTORIES). 2022;(10):32-37. https://doi.org/10.17073/1683-4518-2022-10-32-37
Refbacks
- There are currently no refbacks.