Open Access Open Access  Restricted Access Subscription Access

Exothermic synthesis of ceramic materials based on the system Zn2SiO4‒RO (R ― Ba, Sr)‒Al2O3‒SiO2


https://doi.org/10.17073/1683-4518-2022-9-21-27

Full Text:




Abstract

The synthesis of ceramic materials in the Zn2SiO4‒RO (R ― Ba, Sr)‒Al2O3‒SiO2 system was carried out using the technology of exothermic synthesis from solutions including zinc, barium and strontium nitrates, silica and organic reducing agent (glycine and carbamide). It is shown that the implementation of an exothermic process followed by calcination at a temperature of 1000 °C contributes to the formation of crystalline phases of willemite (Zn2SiO4), barium aluminosilicates (BaAl2Si2O8) and strontium (SrAl2Si2O8). The dependence of the quantitative phase composition and parameters of the elementary cells of the crystalline phases is established. Sintering of synthesized materials occurs at a temperature of 1275 °C. The dielectric permittivity of sintered materials is 5,33‒6,06 and the tangent of the dielectric loss angle is 1,5·10‒3‒3,16·10‒3 at a frequency of 1 MHz, the minimum values correspond to ceramics based on the Zn2SiO4‒BaAl2Si2O8‒SrAl2Si2O8 triple system. Ill. 5. Ref. 19. Tab. 2.


About the Author

K. B. Podbolotov
Физико-технический институт НАН Беларуси
Belarus


References

1. Ohsato, H. Microwave-millimeterwave dielectric materials / H. Ohsato, T. Tsunooka, A. Kan [et al.] // Key Eng. Mater. ― 2004. ― Vol. 269. ― P. 195‒198.

2. Suzdal'tsev, E. I. Radio-transparent ceramics: yesterday, today, tomorrow / E. I. Suzdal'tsev // Refract. Ind. Ceram. ― 2015. ― Vol. 55, № 5. ― Р. 377‒390. Суздальцев, Е. И. Керамические радиопрозрачные материалы: вчера, сегодня, завтра / Е. И. Суздальцев // Новые огнеупоры. ― 2014. ― № 10. ― С. 5‒18.

3. Михеев, С. В. Керамические и композиционные материалы в авиационной технике / С. В. Михеев, Г. Б. Строганов, А. Г. Ромашин. ― М. : Альтекс, 2002. ― 275 с.

4. Guo, Y. Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency / Y. Guo, H. Ohsato, K. Kakimoto // J. Eur. Ceram. Soc. ― 2006. ― Vol. 26. ― P. 1827‒1830.

5. Bhatkar, V. B. Combustion synthesis of silicate phosphors / V. B. Bhatkar, S. K. Omanwar, S. V. Moharil // Optical Materials. ― 2007. ― Vol. 29, № 8. ― P. 1066‒1070.

6. Chandra Babu, B. Dielectric properties of willemite Zn2SiO4 nanopowders by sol-gel method / B. Chandra Babu, S. Buddhudu // Physics Procedia. ― 2013. ― Vol. 49. ― P. 128‒136.

7. Yue, Zhenxing. Phase characterization and dielectric properties of Zn2SiO4 ceramics derived from a solgel process / Zhenxing Yue, Mingzhi Dong, Siqin Meng, Longtu Li // Ferroelectrics. ― 2009. ― Vol. 387, № 1. ― P. 184‒188.

8. Li, C. Effect of size-dependent thermal instability on synthesis of Zn2SiO4‒SiOх core–shell nanotube arrays and their cathodoluminescence properties / C. Li, Y. Bando, B. Dierre [et al.]. // Nanoscale Res. Lett. ― 2010. ― Vol. 5. ― P. 773.

9. Yoshiki, B. High-temperature modification of barium feldspar / B. Yoshiki, K. Matsumoto // J. Am. Ceram. Soc. ― 1997. ― Vol. 809. ― P. 2021‒2029.

10. Kobayashi, Y. Transformation kinetics from hexacelsian to celsian for powders having uniform particle size / Y. Kobayashi // Ceram. Int. ― 2001. ― Vol. 27. ― P. 179‒184.

11. Frety, N. Microstructure and crystallization behaviour of sol-gel derived 1/2SrO‒1/2BaO‒Al2O3‒SiO2 glass-ceramic / N. Frety, A. Taylor, M. H. Lewis // J. NonCryst. Solids. ― 1996. ― Vol. 195. ― P. 28‒37.

12. Bansal, N. P. Crystallization kinetics of BaO‒Al2O3‒ SiO2 glasses / N. P. Bansal, M. J. Hyatt // J. Mater. Res. ― 1989. ― Vol. 4. ― P. 1257‒1265.

13. Sung, Y. M. Sintering and crystallization of offstoichiometric SrO‒Al2O3‒2SiO2 glasses / Y. M. Sung, S. Kim // J. Mater. Sci. ― 2000. ― Vol. 35. ― P. 4293‒4299.

14. Lisachuk, H. V. Analysis of solid phase reactions in the system SrO‒Al2O3‒SiO2 / H. V. Lisachuk, R. V. Kryvobok, A. V. Zakharov // Ceramics: Science and Life. ― 2015. ― Vol. 26, № 1. ― P. 49‒56.

15. Савчук, Г. К. Получение и диэлектрические свойства цельзиановой керамики на основе гексагональной модификации BaAl2Si2O8 / Г. К. Савчук, Т. П. Петроченко, А. А. Климза // Неорганические материалы. ― 2013. ― T. 49, № 6. ― С. 674‒679.

16. Podbolotov, K. B. Exothermic synthesis of ceramic materials based on barium and strontium aluminosilicates / K. B. Podbolotov, A. T. Volochko, G. V. Lisachuk [et al.] // Voprosy khimii i khimicheskoi tekhnologii. ― 2021. ― № 6. ― P. 57—64.

17. Lisachuk, G. V. Development of new compositions of ceramic masses in SrO‒Al2O3‒SiO2 system / G. V. Lisachuk, R. V. Kryvobok, A. V. Zakharov [et al. ] // Funct. Mater. ― 2017. ― Vol. 24, № 1. ― Р. 162‒167.

18. Yen-Pei, Fu. Solid-state synthesis of ceramics in the ВаO‒SrO‒Al2O3‒SiO2 system / Yen-Pei Fu, Chin-Chung Chang, Cheng-Hsiung Lin, Tsung-Shune Chin // Ceram. Int. ― 2004. ― Vol. 30, № 1. ― P. 41‒45.

19. Guillem, M. C. Kinetics and mechanism of formation of celsian from barium carbonate and kaolin / M. C. Guillem, C. Guillem // Trans. J. Brit. Ceram. Soc. ― 1984. ― Vol. 83. ― P. 150‒154.


Supplementary files

For citation: Podbolotov K.B. Exothermic synthesis of ceramic materials based on the system Zn2SiO4‒RO (R ― Ba, Sr)‒Al2O3‒SiO2. NOVYE OGNEUPORY (NEW REFRACTORIES). 2022;(9):21-27. https://doi.org/10.17073/1683-4518-2022-9-21-27

Views: 218

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)